Contents 1 Mammalian spermatozoon structure, function, and size 1.1 Humans 1.2 DNA damage and repair 1.3 Avoidance of immune system response 2 Spermatozoa in other organisms 2.1 Animals 2.2 Plants, algae and fungi 3 Spermatozoa production in mammals 4 Spermatozoa activation 5 Artificial storage 6 History 7 See also 8 References 9 External links

Mammalian spermatozoon structure, function, and size[edit] Humans[edit] The human sperm cell is the reproductive cell in males and will only survive in warm environments; once it leaves the male body the sperm's survival likelihood is reduced and it may die, thereby decreasing the total sperm quality. Sperm cells come in two types, "female" and "male". Sperm cells that give rise to female (XX) offspring after fertilization differ in that they carry an X-chromosome, while sperm cells that give rise to male (XY) offspring carry a Y-chromosome. Human sperm cells consist of a flat, disc shaped head 5.1 µm by 3.1 µm and a tail 50 µm long.[2] The tail flagellates, which propels the sperm cell (at about 1–3 mm/minute in humans) by whipping in an elliptical cone.[3] Head: It has a compact nucleus with only chromatic substance and is surrounded by only a thin rim of cytoplasm. Above the nucleus lies a cap-like structure called the acrosome, formed by modification of the Golgi body and which secretes enzyme spermlysin (hyaluronidase, corona-penetrating enzyme, zona eyesin, or aerosin.) On the surface of the head lies a decapcitating substance which is removed before fertilisation. Neck: It is the smallest part (0.03 ×10−6 m), and has a proximal and distal centriole. The proximal centriole enters into the egg during fertilisation and starts the first cleavage division of the egg, which has no centriole. The distal centriole gives rise to axial filament which forms the tail and has (9+2) arrangement. A transitory membrane called Manchette lies in middle piece. Middle piece: It has 10-14 spirals of mitochondria surrounding axial filament in the cytoplasm. It provides motility, and hence is called the powerhouse of the sperm. It also has a ring centriole (annulus) with unknown function. Tail: It is the longest part(50×10−6 m) having axial filament surrounded by cytoplasm and plasma membrane, but at the posterior end axial filament is naked. Semen has an alkaline nature, and they do not reach full motility (hypermotility) until they reach the vagina where the alkaline pH is neutralized by acidic vaginal fluids. This gradual process takes 20–30 minutes. In this time, fibrinogen from the seminal vesicles forms a clot, securing and protecting the sperm. Just as they become hypermotile, fibrinolysin from the prostate dissolves the clot, allowing the sperm to progress optimally. The spermatozoon is characterized by a minimum of cytoplasm and the most densely packed DNA known in eukaryotes. Compared to mitotic chromosomes in somatic cells, sperm DNA is at least sixfold more highly condensed.[4] The specimen contributes with DNA/chromatin, a centriole and perhaps also an oocyte-activating factor (OAF).[5] It may also contribute with paternal messenger RNA (mRNA), also contributing to embryonic development.[5] Electron micrograph of human spermatozoa magnified 3140 times. Sperm cells in the urine sample of a 45-year-old male patient who is being followed with the diagnosis of benign prostate hyperplasia. Another image from the same urine sample as with the image on the left. The human spermatozoon contains over 6000 different proteins.[6] DNA damage and repair[edit] DNA damages present in spermatozoa in the period after meiosis but before fertilization may be repaired in the fertilized egg, but if not repaired, can have serious deleterious effects on fertility and the developing embryo. Human spermatozoa are particularly vulnerable to free radical attack and the generation of oxidative DNA damage.[7][8] (see e.g. 8-Oxo-2'-deoxyguanosine) Exposure of males to certain lifestyle, environmental or occupational hazards may increase the risk of aneuploid spermatozoa.[9] In particular, risk of aneuploidy is increased by tobacco smoking,[10][11] and occupational exposure to benzene,[12] insecticides,[13][14] and perfluorinated compounds.[15] Increased aneuploidy of spermatozoa often occurs in association with increased DNA damage. DNA fragmentation and increased in situ DNA susceptibility to denaturation, the features similar to these seen during apoptosis of somatic cells, characterize abnormal spermatozoa in cases of male infertility.[16][17] Avoidance of immune system response[edit] Glycoprotein molecules on the surface of ejaculated sperm cells are recognized by all human female immune systems, and interpreted as a signal that the cell should not be rejected. The female immune system might otherwise attack sperm in the reproductive tract. The specific glycoproteins coating sperm cells are also utilized by some cancerous and bacterial cells, some parasitic worms, and HIV-infected white blood cells, thereby avoiding an immune response from the host organism.[18] The blood-testis barrier, maintained by the tight junctions between the Sertoli cells of the seminiferous tubules, prevents communication between the forming spermatozoa in the testis and the blood vessels (and immune cells circulating within them) within the interstitial space. This prevents them from eliciting an immune response. The blood-testis barrier is also important in preventing toxic substances from disrupting spermatogenesis.

Spermatozoa in other organisms[edit] Motile sperm cells of algae and seedless plants. See also: Sperm and Female sperm storage Animals[edit] Fertilization relies on spermatozoa for most sexually reproductive animals. Some species of fruit fly produce the largest known spermatozoon found in nature.[19][20] Drosophila melanogaster produces sperm that can be up to 1.8 mm,[21] while its relative Drosophila bifurca produces the largest known spermatozoon, measuring over 58 mm in size.[19] In Drosophila melanogaster, the entire sperm, tail included, gets incorporated into the oocyte cytoplasm, however, for Drosophila bifurca only a small portion of the tail enters the oocyte.[22] The wood mouse Apodemus sylvaticus possesses spermatozoa with falciform morphology. Another characteristic which makes these gametocytes unique is the presence of an apical hook on the sperm head. This hook is used to attach to the hooks or to the flagella of other spermatozoa. Aggregation is caused by these attachments and mobile trains result. These trains provide improved motility in the female reproductive tract and are a means by which fertilization is promoted.[23] The postmeiotic phase of mouse spermatogenesis is very sensitive to environmental genotoxic agents, because as male germ cells form mature spermatozoa they progressively lose the ability to repair DNA damage.[24] Irradiation of male mice during late spermatogenesis can induce damage that persists for at least 7 days in the fertilizing spermatozoa, and disruption of maternal DNA double-strand break repair pathways increases spermatozoa-derived chromosomal aberrations.[25] Treatment of male mice with melphalan, a bifunctional alkylating agent frequently employed in chemotherapy, induces DNA lesions during meiosis that may persist in an unrepaired state as germ cells progress though DNA repair-competent phases of spermatogenic development.[26] Such unrepaired DNA damages in spermatozoa, after fertilization, can lead to offspring with various abnormalities. Sea urchins such as Arbacia punctulata are ideal organisms to use in sperm research, they spawn large numbers of sperm into the sea, making them well-suited as model organisms for experiments. Plants, algae and fungi[edit] The gametophytes of bryophytes, ferns and some gymnosperms produce motile sperm cells, contrary to pollen grains employed in most gymnosperms and all angiosperms. This renders sexual reproduction in the absence of water impossible, since water is a necessary medium for sperm and egg to meet. Algae and lower plant sperm cells are often multi-flagellated (see image) and thus morphologically different from animal spermatozoa. Some algae and fungi produce non-motile sperm cells, called spermatia. In higher plants and some algae and fungi, fertilization involves the migration of the sperm nucleus through a fertilization tube (e.g. pollen tube in higher plants) to reach the egg cell.

Spermatozoa production in mammals[edit] Main article: Spermatogenesis Spermatozoa are produced in the seminiferous tubules of the testes in a process called spermatogenesis. Round cells called spermatogonia divide and differentiate eventually to become spermatozoa. During copulation the cloaca or vagina gets inseminated, and then the spermatozoa move through chemotaxis to the ovum inside a Fallopian tube or the uterus.

Spermatozoa activation[edit] Main article: Acrosome reaction Acrosome reaction on a sea urchin cell Approaching the egg cell is a rather complex, multistep process of chemotaxis guided by different chemical substances/stimuli on individual levels of phylogeny. One of the most significant, common signaling characters of the event is that a prototype of professional chemotaxis receptors, formyl peptide receptor (60,000 receptor/cell) as well as the activator ability of its ligand formyl Met-Leu-Phe have been demonstrated in the surface membrane even in the case of human sperms.[27] Mammalian sperm cells become even more active when they approach an egg cell in a process called sperm activation. Sperm activation has been shown to be caused by calcium ionophores in vitro, progesterone released by nearby cumulus cells and binding to ZP3 of the zona pellucida. The cumulus cells are embedded in a gel-like substance made primarily of hyaluronic acid, and developed in the ovary with the egg and support it as it grows. The initial change is called "hyperactivation", which causes a change in spermatozoa motility. They swim faster and their tail movements become more forceful and erratic. A recent discovery links hyperactivation to a sudden influx of calcium ion into the tails. The whip-like tail (flagellum) of the sperm is studded with ion channels formed by proteins called CatSper. These channels are selective, allowing only calcium ions to pass. The opening of CatSper channels is responsible for the influx of calcium. The sudden rise in calcium levels causes the flagellum to form deeper bends, propelling the sperm more forcefully through the viscous environment. Sperm hyperactivity is necessary for breaking through two physical barriers that protect the egg from fertilization. The second process in sperm activation is the acrosome reaction. This involves releasing the contents of the acrosome, which disperse, and the exposure of enzymes attached to the inner acrosomal membrane of the sperm. This occurs after the sperm first meets the egg. This lock-and-key type mechanism is species-specific and prevents the sperm and egg of different species from fusing. There is some evidence that this binding is what triggers the acrosome to release the enzymes that allow the sperm to fuse with the egg. ZP3, one of the proteins that make up the zona pellucida, then binds to a partner molecule on the sperm. Enzymes on the inner acrosomal membrane digest the zona pellucida. After the sperm penetrates the zona pellucida, part of the sperm's cell membrane then fuses with the egg cell's membrane, and the contents of the head diffuse into the egg. Upon penetration, the oocyte is said to have become activated. It undergoes its secondary meiotic division, and the two haploid nuclei (paternal and maternal) fuse to form a zygote. In order to prevent polyspermy and minimise the possibility of producing a triploid zygote, several changes to the egg's zona pellucida renders them impenetrable shortly after the first sperm enters the egg.

Artificial storage[edit] Spermatozoa can be stored in diluents such has the Illini Variable Temperature (IVT) diluent, which have been reported to be able to preserve high fertility of spermatozoa for over seven days.[28] The IVT diluent is composed of several salts, sugars and antibacterial agents and gassed with CO2.[28] Semen cryopreservation can be used for far longer storage durations. For human spermatozoa, the longest reported successful storage with this method is 21 years.[29]

History[edit] In 1677 microbiologist Antonie van Leeuwenhoek discovers spermatozoa. In 1841 the Swiss anatomist Albert von Kölliker wrote about spermatozoon in his work Untersuchungen über die Bedeutung der Samenfäden.

See also[edit] Aneuploidy Non-disjunction

References[edit] ^ "Timeline: Assisted reproduction and birth control". CBC News. Retrieved 2006-04-06.  ^ Smith, D.J. (2009). "Human sperm accumulation near surfaces: a simulation study" (PDF). Journal of Fluid Mechanics. 621: 295. doi:10.1017/S0022112008004953. Retrieved 20 May 2012.  ^ Ishijima, Sumio; Oshio, Shigeru; Mohri, Hideo (1986). "Flagellar movement of human spermatozoa". Gamete Research. 13 (3): 185–197. doi:10.1002/mrd.1120130302.  ^ Ward WS, Coffey DS (1991). "DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells". Biology of Reproduction. 44 (4): 569–74. doi:10.1095/biolreprod44.4.569. PMID 2043729.  ^ a b Developmental sperm contributions: fertilization and beyond Gerardo Barroso, M.D., M.Sc.a, Carlos Valdespin, M.D.a, Eva Vega, M.Sc.a, Ruben Kershenovich, M.D.a, Rosaura Avila, B.Sc.a, Conrado Avendaño, M.D.b, Sergio Oehninger, M.D., Ph.D.b. FertStert, Volume 92, Issue 3, Pages 835-848 (September 2009) ^ Amaral, A.; Castillo, J.; Ramalho-Santos, J.; Oliva, R. (2013). "The combined human sperm proteome: Cellular pathways and implications for basic and clinical science". Human Reproduction Update. 20: 40–62. doi:10.1093/humupd/dmt046. PMID 24082039.  ^ Gavriliouk D, Aitken RJ (2015). "Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Offspring". Advances in Experimental Medicine and Biology. 868: 23–47. doi:10.1007/978-3-319-18881-2_2. PMID 26178844.  ^ Lozano, G.M.; Bejarano, I.; Espino, J.; González, D.; Ortiz, A.; García, J.F.; Rodríguez, A.B.; Pariente, J.A. (2009). "Density gradient capacitation is the most suitable method to improve fertilization and to reduce DNA fragmentation positive spermatozoa of infertile men". Anatolian Journal of Obstetrics & Gynecology. 3 (1): 1–7.  ^ Templado C, Uroz L, Estop A (2013). "New insights on the origin and relevance of aneuploidy in human spermatozoa". Molecular Human Reproduction. 19 (10): 634–43. doi:10.1093/molehr/gat039. PMID 23720770.  ^ Shi Q, Ko E, Barclay L, Hoang T, Rademaker A, Martin R (2001). "Cigarette smoking and aneuploidy in human sperm". Molecular Reproduction and Development. 59 (4): 417–21. doi:10.1002/mrd.1048. PMID 11468778.  ^ Rubes J, Lowe X, Moore D, Perreault S, Slott V, Evenson D, Selevan SG, Wyrobek AJ (1998). "Smoking cigarettes is associated with increased sperm disomy in teenage men". Fertility and Sterility. 70 (4): 715–23. doi:10.1016/S0015-0282(98)00261-1. PMID 9797104.  ^ Xing C, Marchetti F, Li G, Weldon RH, Kurtovich E, Young S, Schmid TE, Zhang L, Rappaport S, Waidyanatha S, Wyrobek AJ, Eskenazi B (2010). "Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy". Environmental Health Perspectives. 118 (6): 833–9. doi:10.1289/ehp.0901531. PMC 2898861 . PMID 20418200.  ^ Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S, Wang X (2004). "Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate". Toxicology. 203 (1–3): 49–60. doi:10.1016/j.tox.2004.05.018. PMID 15363581.  ^ Xia Y, Cheng S, Bian Q, Xu L, Collins MD, Chang HC, Song L, Liu J, Wang S, Wang X (2005). "Genotoxic effects on spermatozoa of carbaryl-exposed workers". Toxicological Sciences. 85 (1): 615–23. doi:10.1093/toxsci/kfi066. PMID 15615886.  ^ Governini L, Guerranti C, De Leo V, Boschi L, Luddi A, Gori M, Orvieto R, Piomboni P (2014). "Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds". Andrologia. 47: 1012–9. doi:10.1111/and.12371. PMID 25382683.  ^ Gorczyca, W; Traganos, F; Jesionowska, H; Darzynkiewicz, Z (1993). "Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells. Analogy to apoptosis of somatic cells". Exp Cell Res. 207: 202–205. doi:10.1006/excr.1993.1182. PMID 8391465.  ^ Evenson, DP; Darzynkiewicz, Z; Melamed, MR (1980). "Relation of mammalian sperm chromatin heterogeneity to fertility". Science. 210: 1131–1133. doi:10.1126/science.7444440. PMID 7444440.  ^ "Sperm clue to 'disease immunity'". BBC News. 2007-12-17.  ^ a b Pitnick, S; Spicer, GS; Markow, TA (11 May 1995). "How long is a giant sperm?". Nature. 375 (6527): 109. doi:10.1038/375109a0. PMID 7753164.  ^ Pitnick, S; Markow, TA (27 September 1994). "Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm". Proceedings of the National Academy of Sciences of the United States of America. 91 (20): 9277–81. doi:10.1073/pnas.91.20.9277. PMC 44795 . PMID 7937755.  ^ Cooper, K.W. (1950). Demerec, M., ed. Biology of Drosophila. New York: Wiley. pp. 1–61.  ^ Pitnick, S.; Spicer, G. S.; Markow, T. A. (1995). "How long is a giant sperm". Nature. 375 (6527): 109. doi:10.1038/375109a0. PMID 7753164.  ^ Moore, H; Dvoráková, K; Jenkins, N; Breed, W (2002). "Exceptional sperm cooperation in Wood Mouse". Nature. 418: 174–177. doi:10.1038/nature00832. PMID 12110888.  ^ Marchetti F, Wyrobek AJ (2008). "DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage". DNA Repair (Amsterdam). 7 (4): 572–81. doi:10.1016/j.dnarep.2007.12.011. PMID 18282746.  ^ Marchetti F, Essers J, Kanaar R, Wyrobek AJ (2007). "Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations". Proceedings of the National Academy of Sciences of the United States of America. 104 (45): 17725–9. doi:10.1073/pnas.0705257104. PMC 2077046 . PMID 17978187.  ^ Marchetti F, Bishop J, Gingerich J, Wyrobek AJ (2015). "Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair". Scientific Reports. 5: 7689. doi:10.1038/srep07689. PMC 4286742 . PMID 25567288.  ^ Gnessi L, Fabbri A, Silvestroni L, Moretti C, Fraioli F, Pert CB, Isidori A (1986). "Evidence for the presence of specific receptors for N-formyl chemotactic peptides on human spermatozoa". Journal of Clinical Endocrinology and Metabolism. 63 (4): 841–6. doi:10.1210/jcem-63-4-841. PMID 3018025.  ^ a b Watson, P. F. (1993). "The potential impact of sperm encapsulation technology on the importance of timing of artificial insemination: A perspective in the light of published work". Reproduction, Fertility and Development. 5 (6): 691–9. doi:10.1071/RD9930691. PMID 9627729.  ^ Planer NEWS and Press Releases > Child born after 21 year semen storage using Planer controlled rate freezer 14/10/2004

External links[edit] Wikimedia Commons has media related to Spermatozoon diagrams. Slower conception 'leads to boys' Human Sperm Under a Microscope v t e Sex Biological terms Sexual dimorphism Male Female Sexual differentiation Feminization Virilization Sex-determination system XY ZW XO Temperature-dependent Haplodiploidy Heterogametic sex Homogametic sex Sex chromosome X chromosome Y chromosome Testis-determining factor Hermaphrodite Sequential hermaphroditism Intersex Sexual reproduction Evolution of sexual reproduction Anisogamy Isogamy Germ cell Reproductive system Sex organ Meiosis Gametogenesis Spermatogenesis Oogenesis Gamete spermatozoon ovum Fertilization External Internal Sexual selection Plant reproduction Fungal reproduction Sexual reproduction in animals Sexual intercourse Human reproduction Sexuality Plant sexuality Animal sexuality Human sexuality Mechanics Differentiation Activity Sex portal Biology portal v t e Male reproductive system Internal Seminal tract Testes layers Tunica vaginalis Tunica albuginea Tunica vasculosa Appendix Mediastinum Lobules Septa Leydig cell Sertoli cell Blood–testis barrier Spermatogenesis Spermatogonium Spermatocytogenesis Spermatocyte Spermatidogenesis Spermatid Spermiogenesis Spermatozoon Other Seminiferous tubules Tubuli seminiferi recti Rete testis Efferent ducts Epididymis Appendix Stereocilia Paradidymis Spermatic cord Vas deferens Ampulla Ejaculatory duct Accessory glands Seminal vesicles excretory duct Prostate Urethral crest Seminal colliculus Prostatic utricle Ejaculatory duct Prostatic sinus Prostatic ducts Bulbourethral glands External Penis root Crus Bulb Fundiform ligament Suspensory ligament body Corpus cavernosum Corpus spongiosum glans Foreskin Frenulum Corona fascia superficial deep Tunica albuginea Septum of the penis Urinary tract Internal urethral orifice Urethra Prostatic Intermediate Spongy Navicular fossa External urethral orifice Lacunae of Morgagni Urethral gland Scrotum layers skin Dartos External spermatic fascia Cremaster Cremasteric fascia Internal spermatic fascia Perineal raphe Scrotal septum v t e Antonie van Leeuwenhoek Microscopic discoveries 1 Microscopic organisms Bacteria Ciliate Giardia Infusoria Protist Protozoa Rotifer Volvox Others Spermatozoon General topics Animalcule Bacteriology Protozoology Protistology Spontaneous generation Preformationism Microscopic discovery of microorganisms Microscopic scale History of biology History of microbiology Natural history Optical microscopy History of microscopy History of the microscope Invention of the optical microscope Timeline of microscope technology Golden Age of Dutch science and technology Science and technology in the Dutch Republic Royal Society Scientific Revolution Age of Reason Related people Clifford Dobell (Leeuwenhoek scholar) Brian J. Ford (Leeuwenhoek scholar) Galileo Galilei Regnier de Graaf Robert Hooke (author of Micrographia) Nicolaas Hartsoeker Nicolas Steno Jan Swammerdam Johannes Vermeer Recognitions Antoni van Leeuwenhoek Ziekenhuis Leeuwenhoek (crater) Leeuwenhoek Lecture Leeuwenhoek Medal Leeuwenhoeckia Levenhookia Leeuwenhoekiella List of people considered father or mother of a scientific field 1 First observed, described, and studied by van Leeuwenhoek. Authority control GND: 4135383-3 NDL: 00570390 Retrieved from "" Categories: Germ cellsSemenHuman cellsFertilityMen's healthAntonie van LeeuwenhoekHidden categories: Medicine infobox template using GraySubject or GrayPageMedicine infobox template using Dorlands parameterArticles containing Ancient Greek-language textCommons category with local link different than on WikidataWikipedia articles with GND identifiers

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia Commons Languages AfrikaansAlemannischالعربيةAzərbaycancaBân-lâm-gúБеларускаяБеларуская (тарашкевіца)‎БългарскиBosanskiCatalàČeštinaChiShonaDanskDeutschEestiΕλληνικάEspañolEsperantoEstremeñuEuskaraفارسیFrançaisGalego한국어ՀայերենHrvatskiIdoBahasa Indonesiaᐃᓄᒃᑎᑐᑦ/inuktitutÍslenskaItalianoעבריתBasa JawaქართულიҚазақшаLatinaLatviešuLietuviųМакедонскиBahasa MelayuМонголမြန်မာဘာသာNederlands日本語NorskNorsk nynorskOccitanOʻzbekcha/ўзбекчаPolskiPortuguêsRomânăRuna SimiРусскийScotsSimple EnglishSlovenčinaSlovenščinaСрпски / srpskiSrpskohrvatski / српскохрватскиBasa SundaSuomiSvenskaTagalogТатарча/tatarçaТоҷикӣУкраїнськаTiếng ViệtWinaray粵語中文 Edit links This page was last edited on 9 January 2018, at 13:31. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.736","walltime":"0.860","ppvisitednodes":{"value":2655,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":126423,"limit":2097152},"templateargumentsize":{"value":1140,"limit":2097152},"expansiondepth":{"value":9,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 756.365 1 -total"," 36.01% 272.350 1 Template:Reflist"," 22.92% 173.392 2 Template:Lang-grc"," 22.71% 171.777 24 Template:Cite_journal"," 14.70% 111.219 1 Template:Infobox_anatomy"," 11.82% 89.401 1 Template:Infobox"," 9.44% 71.405 7 Template:Navbox"," 5.63% 42.557 2 Template:Cite_news"," 4.98% 37.661 1 Template:IPAc-en"," 4.93% 37.253 1 Template:Male_reproductive_system"]},"scribunto":{"limitreport-timeusage":{"value":"0.461","limit":"10.000"},"limitreport-memusage":{"value":17611391,"limit":52428800}},"cachereport":{"origin":"mw1209","timestamp":"20180116135511","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":98,"wgHostname":"mw1273"});});

Spermatozoon - Photos and All Basic Informations

Spermatozoon More Links

OvumFertilisationLatinMedical Subject HeadingsElsevierAnatomical TerminologyHelp:IPA/EnglishAncient Greek LanguageAncient Greek LanguageSpermCell (biology)PloidyCell (biology)GameteFertilizationOvumZygoteChromosomeEmbryoGeneDiploidMitochondrial DNASexX ChromosomeFemaleY ChromosomeMaleAnton Van LeeuwenhoekSperm QualityMicrometreEukaryotic FlagellumSemenVaginaFibrinogenSeminal VesiclesFibrinolysinProstateCytoplasmEukaryotesMitosisSomatic CellDNAChromatinCentrioleOocyteMessenger RNAMicrographBenign Prostate HyperplasiaProteinMeiosisHuman Fertilization8-Oxo-2'-deoxyguanosineAneuploidyDNA FragmentationApoptosisMale InfertilityGlycoproteinReproductive TractHost (biology)Blood-testis BarrierSertoli CellInterstitial FluidEnlargeSpermFemale Sperm StorageDrosophilidaeDrosophila MelanogasterDrosophila BifurcaOocyteCytoplasmApodemus SylvaticusGenotoxicityMelphalanSea UrchinArbacia PunctulataModel OrganismGametophyteBryophyteFernGymnospermSpermPollenAngiospermWaterPollen TubeSpermatogenesisSeminiferous TubuleTestesSpermatogoniaCopulationCloacaVaginaInseminationChemotaxisFallopian TubeUterusAcrosome ReactionEnlargeSea UrchinChemotaxisFormyl Peptide ReceptorCalciumIonophoresIn VitroProgesteroneZP3Zona PellucidaIon ChannelCatSperAcrosome ReactionAcrosomeFertilizationOvum ActivationZygotePolyspermyTriploidyCarbon DioxideSemen CryopreservationAntonie Van LeeuwenhoekAlbert Von KöllikerAneuploidyNon-disjunctionDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierTemplate:Sex (biology)Template Talk:Sex (biology)SexSexual DimorphismMaleFemaleSexual DifferentiationFeminization (biology)VirilizationSex-determination SystemXY Sex-determination SystemZW Sex-determination SystemX0 Sex-determination SystemTemperature-dependent Sex DeterminationHaplodiploidyHeterogametic SexHeterogametic SexAllosomeX ChromosomeY ChromosomeTestis-determining FactorHermaphroditeSequential HermaphroditismIntersexSexual ReproductionEvolution Of Sexual ReproductionAnisogamyIsogamyGerm CellReproductive SystemSex OrganMeiosisGametogenesisSpermatogenesisOogenesisGameteEgg CellFertilisationExternal FertilizationInternal FertilizationSexual SelectionPlant ReproductionMating In FungiSexual Reproduction In AnimalsSexual IntercourseHuman ReproductionHuman SexualityPlant Reproductive MorphologyAnimal Sexual BehaviourHuman SexualityMechanics Of Human SexualitySexual Differentiation In HumansHuman Sexual ActivityPortal:SexualityPortal:BiologyTemplate:Male Reproductive SystemTemplate Talk:Male Reproductive SystemMale Reproductive SystemMale Internal GenitaliaSeminal TractTesticleTunica VaginalisTunica Albuginea Of TestisTunica Vasculosa TestisAppendix Of TestisMediastinum TestisLobules Of TestisSepta Of TestisLeydig CellSertoli CellBlood–testis BarrierSpermatogenesisSpermatogoniumSpermatocytogenesisSpermatocyteSpermatidogenesisSpermatidSpermiogenesisSeminiferous TubuleTubuli Seminiferi RectiRete TestisEfferent DuctsEpididymisAppendix Of The EpididymisStereocilia (epididymis)ParadidymisSpermatic CordVas DeferensAmpulla Of Ductus DeferensEjaculatory DuctSeminal VesicleExcretory Duct Of Seminal GlandProstateUrethral CrestSeminal ColliculusProstatic UtricleEjaculatory DuctProstatic SinusProstatic DuctsBulbourethral GlandMale External GenitaliaHuman PenisRoot Of PenisCrus Of PenisBulb Of PenisFundiform LigamentSuspensory Ligament Of PenisBody Of PenisCorpus Cavernosum PenisCorpus Spongiosum PenisGlans PenisForeskinFrenulum Of Prepuce Of PenisCorona Of Glans PenisFasciaSubcutaneous Tissue Of PenisBuck's FasciaTunica Albuginea (penis)Septum Of The PenisUrinary SystemInternal Urethral OrificeUrethraProstatic UrethraMembranous UrethraSpongy UrethraNavicular Fossa Of Male UrethraExternal Urethral Orifice (male)Lacunae Of MorgagniUrethral GlandScrotumHuman SkinDartosExternal Spermatic FasciaCremaster MuscleCremasteric FasciaInternal Spermatic FasciaPerineal RapheScrotal SeptumTemplate:Antonie Van LeeuwenhoekAntonie Van LeeuwenhoekCategory:Microscopic Organisms Described By Antonie Van LeeuwenhoekBacteriaCiliateGiardiaInfusoriaProtistProtozoaRotiferVolvoxAnimalculeBacteriologyProtozoologyProtistologySpontaneous GenerationPreformationismMicroscopic Discovery Of MicroorganismsMicroscopic ScaleHistory Of BiologyHistory Of MicrobiologyNatural HistoryOptical MicroscopyHistory Of MicroscopyHistory Of The MicroscopeOptical MicroscopeTimeline Of Microscope TechnologyGolden Age Of Dutch Science And TechnologyCategory:Science And Technology In The Dutch RepublicRoyal SocietyScientific RevolutionAge Of ReasonClifford DobellBrian J. FordGalileo GalileiRegnier De GraafRobert HookeMicrographiaNicolaas HartsoekerNicolas StenoJan SwammerdamJohannes VermeerAntoni Van LeeuwenhoekziekenhuisLeeuwenhoek (crater)Leeuwenhoek LectureLeeuwenhoek MedalLeeuwenhoeckiaCategory:LevenhookiaCategory:LeeuwenhoekiellaList Of People Considered Father Or Mother Of A Scientific FieldHelp:Authority ControlIntegrated Authority FileNational Diet LibraryHelp:CategoryCategory:Germ CellsCategory:SemenCategory:Human CellsCategory:FertilityCategory:Men's HealthCategory:Antonie Van LeeuwenhoekCategory:Medicine Infobox Template Using GraySubject Or GrayPageCategory:Medicine Infobox Template Using Dorlands ParameterCategory:Articles Containing Ancient Greek-language TextCategory:Commons Category With Local Link Different Than On WikidataCategory:Wikipedia Articles With GND IdentifiersDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link