Contents 1 Asexual reproduction 1.1 Structures 1.2 Usage 2 Sexual reproduction 3 History of sexual reproduction 3.1 Flowering plants 3.1.1 Pollination 3.2 Ferns 3.3 Bryophytes 4 Sexual morphology 5 See also 6 References 7 External links


Asexual reproduction[edit] See also: Asexual reproduction Asexual reproduction may happen through budding, fragmentation, fission, spore formation and vegetative propagation. Plants have two main types of asexual reproduction in which new plants are produced that are genetically identical clones of the parent individual. Vegetative reproduction involves a vegetative piece of the original plant (budding, tillering, etc.) and is distinguished from apomixis, which is a replacement for sexual reproduction, and in some cases involves seeds. Apomixis occurs in many plant species and also in some non-plant organisms. For apomixis and similar processes in non-plant organisms, see parthenogenesis. Natural vegetative reproduction is mostly a process found in herbaceous and woody perennial plants, and typically involves structural modifications of the stem or roots and in a few species leaves. Most plant species that employ vegetative reproduction do so as a means to perennialize the plants, allowing them to survive from one season to the next and often facilitating their expansion in size. A plant that persists in a location through vegetative reproduction of individuals constitutes a clonal colony; a single ramet, or apparent individual, of a clonal colony is genetically identical to all others in the same colony. The distance that a plant can move during vegetative reproduction is limited, though some plants can produce ramets from branching rhizomes or stolons that cover a wide area, often in only a few growing seasons. In a sense, this process is not one of reproduction but one of survival and expansion of biomass of the individual. When an individual organism increases in size via cell multiplication and remains intact, the process is called vegetative growth. However, in vegetative reproduction, the new plants that result are new individuals in almost every respect except genetic. A major disadvantage to vegetative reproduction, is the transmission of pathogens from parent to offspring; it is uncommon for pathogens to be transmitted from the plant to its seeds (in sexual reproduction or in apomixis), though there are occasions when it occurs.[1] Seeds generated by apomixis are a means of asexual reproduction, involving the formation and dispersal of seeds that do not originate from the fertilization of the embryos. Hawkweed (Hieracium), dandelion (Taraxacum), some Citrus (Citrus) and Kentucky blue grass (Poa pratensis) all use this form of asexual reproduction. Pseudogamy occurs in some plants that have apomictic seeds, where pollination is often needed to initiate embryo growth, though the pollen contributes no genetic material to the developing offspring.[2] Other forms of apomixis occur in plants also, including the generation of a plantlet in replacement of a seed or the generation of bulbils instead of flowers, where new cloned individuals are produced. Asexual reproduction is a type of reproduction where the offspring comes from one parent only, thus, inheriting the characteristics of the parent. Structures[edit] A rhizome is a modified underground stem serving as an organ of vegetative reproduction; the growing tips of the rhizome can separate as new plants, e.g., polypody, iris, couch grass and nettles. Prostrate aerial stems, called runners or stolons, are important vegetative reproduction organs in some species, such as the strawberry, numerous grasses, and some ferns. Adventitious buds form on roots near the ground surface, on damaged stems (as on the stumps of cut trees), or on old roots. These develop into above-ground stems and leaves. A form of budding called suckering is the reproduction or regeneration of a plant by shoots that arise from an existing root system. Species that characteristically produce suckers include Elm (Ulmus), Dandelion (Taraxacum), and many members of the Rose family such as Rosa and Rubus. Plants like onion (Allium cepa), hyacinth (Hyacinth), narcissus (Narcissus) and tulips (Tulipa) reproduce by dividing their underground bulbs into more bulbs. Other plants like potatoes (Solanum tuberosum) and dahlia (Dahlia) reproduce by a similar method involving underground tubers. Gladioli and crocuses (Crocus) reproduce in a similar way with corms. Usage[edit] The most common form of plant reproduction utilized by people is seeds, but a number of asexual methods are utilized which are usually enhancements of natural processes, including: cutting, grafting, budding, layering, division, sectioning of rhizomes, roots, tubers, bulbs, stolons, tillers, etc., and artificial propagation by laboratory tissue cloning. Asexual methods are most often used to propagate cultivars with individual desirable characteristics that do not come true from seed.[3] Fruit tree propagation is frequently performed by budding or grafting desirable cultivars (clones), onto rootstocks that are also clones, propagated by stooling. In horticulture, a "cutting" is a branch that has been cut off from a mother plant below an internode and then rooted, often with the help of a rooting liquid or powder containing hormones. When a full root has formed and leaves begin to sprout anew, the clone is a self-sufficient plant,[4] genetically identical to the mother plant. Examples include cuttings from the stems of blackberries (Rubus occidentalis), African violets (Saintpaulia), verbenas (Verbena) to produce new plants. A related use of cuttings is grafting, where a stem or bud is joined onto a different stem. Nurseries offer for sale trees with grafted stems that can produce four or more varieties of related fruits, including apples. The most common usage of grafting is the propagation of cultivars onto already rooted plants, sometimes the rootstock is used to dwarf the plants or protect them from root damaging pathogens.[5] Since vegetatively propagated plants are clones, they are important tools in plant research. When a clone is grown in various conditions, differences in growth can be ascribed to environmental effects instead of genetic differences.[4]


Sexual reproduction[edit] Main article: Sexual reproduction of plants Part of a series on Sex Biological terms Sexual dimorphism Male Female Sexual differentiation Feminization Virilization Sex-determination system XY X0 ZW Z0 Temperature-dependent Haplodiploidy Heterogametic sex Homogametic sex Sex chromosome X chromosome Y chromosome Testis-determining factor Hermaphrodite Sequential hermaphroditism Intersex Sexual reproduction Evolution of sexual reproduction Anisogamy Isogamy Germ cell Meiosis Gametogenesis Spermatogenesis Oogenesis Gamete spermatozoon ovum Fertilization External fertilization Internal fertilization Sexual selection Plant reproduction Sexual reproduction in animals Sexual intercourse Human reproduction Fungal reproduction Sexuality Plant sexuality Animal sexuality Human sexuality Mechanics Differentiation Activity Sex portal Biology portal v t e Sexual reproduction involves two fundamental processes: meiosis, which rearranges the genes and reduces the number of chromosomes, and fertilization, which restores the chromosome to a complete diploid number. In between these two processes, different types of plants and algae vary, but many of them, including all land plants, undergo alternation of generations, with two different multicellular structures (phases), a gametophyte and a sporophyte. The evolutionary origin and adaptive significance of sexual reproduction are discussed in the pages “Evolution of sexual reproduction” and “Origin and function of meiosis.” The gametophyte is the multicellular structure (plant) that is haploid, containing a single set of chromosomes in each cell. The gametophyte produces male or female gametes (or both), by a process of cell division called mitosis. In vascular plants with separate gametophytes, female gametophytes are known as mega gametophytes (mega=large, they produce the large egg cells) and the male gametophytes are called micro gametophytes (micro=small, they produce the small sperm cells). The fusion of male and female gametes (fertilization) produces a diploid zygote, which develops by mitotic cell divisions into a multicellular sporophyte. The mature sporophyte produces spores by meiosis, sometimes referred to as "reduction division" because the chromosome pairs are separated once again to form single sets. In mosses and liverworts the gametophyte is relatively large, and the sporophyte is a much smaller structure that is never separated from the gametophyte. In ferns, gymnosperms, and flowering plants (angiosperms), the gametophytes are relatively small and the sporophyte is much larger. In gymnosperms and flowering plants the mega gametophyte is contained within the ovule (that may develop into a seed) and the micro gametophyte is contained within a pollen grain.


History of sexual reproduction[edit] Main article: Evolution of sexual reproduction Unlike animals, plants are immobile, and cannot seek out sexual partners for reproduction. In the evolution of early plants, abiotic means, including water and wind, transported sperm for reproduction. The first plants were aquatic, as described in the page "Evolutionary history of plants", and released sperm freely into the water to be carried with the currents. Primitive land plants like liverworts and mosses had motile sperm that swam in a thin film of water or were splashed in water droplets from the male reproduction organs onto the female organs. As taller and more complex plants evolved, modifications in the alternation of generations evolved; in the Paleozoic era progymnosperms reproduced by using spores dispersed on the wind. The seed plants including seed ferns, conifers and cordaites, which were all gymnosperms, evolved 350 million years ago; they had pollen grains that contained the male gametes for protection of the sperm during the process of transfer from the male to female parts. It is believed that insects fed on the pollen, and plants thus evolved to use insects to actively carry pollen from one plant to the next. Seed producing plants, which include the angiosperms and the gymnosperms, have heteromorphic alternation of generations with large sporophytes containing much reduced gametophytes. Angiosperms have distinctive reproductive organs called flowers, with carpels, and the female gametophyte is greatly reduced to a female embryo sac, with as few as eight cells. The male gametophyte consists of the pollen grains. The sperm of seed plants are non-motile, except for two older groups of plants, the Cycadophyta and the Ginkgophyta, which have flagellated sperm. Flowering plants[edit] Flowering plants are the dominant plant form on land and they reproduce by sexual and asexual means. Often their most distinguishing feature is their reproductive organs, commonly called flowers. Sexual reproduction in flowering plants involves the production of male and female gametes, the transfer of the male gametes to the female ovules in a process called pollination. After pollination occurs, fertilization happens and the ovules grow into seeds within a fruit. After the seeds are ready for dispersal, the fruit ripens and by various means the seeds are freed from the fruit and after varying amounts of time and under specific conditions the seeds germinate and grow into the next generation. The anther produces male gametophytes which are pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpel's style, the sperm from the pollen grain migrate into the ovule to fertilize the egg cell and central cell within the female gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus a binucleate female cell) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced the female gametophyte(s), then grows into a fruit, which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate. Pollination[edit] An orchid flower In plants that use insects or other animals to move pollen from one flower to the next, plants have developed greatly modified flower parts to attract pollinators and to facilitate the movement of pollen from one flower to the insect and from the insect back to the next flower. Flowers of wind pollinated plants tend to lack petals and or sepals; typically large amounts of pollen are produced and pollination often occurs early in the growing season before leaves can interfere with the dispersal of the pollen. Many trees and all grasses and sedges are wind pollinated, as such they have no need for large fancy flowers. Plants have a number of different means to attract pollinators including colour, scent, heat, nectar glands, edible pollen and flower shape. Along with modifications involving the above structures two other conditions play a very important role in the sexual reproduction of flowering plants, the first is timing of flowering and the other is the size or number of flowers produced. Often plant species have a few large, very showy flowers while others produce many small flowers, often flowers are collected together into large inflorescences to maximize their visual effect, becoming more noticeable to passing pollinators. Flowers are attraction strategies and sexual expressions are functional strategies used to produce the next generation of plants, with pollinators and plants having co-evolved, often to some extraordinary degrees, very often rendering mutual benefit. Flower heads showing disk and ray florets. The largest family of flowering plants is the orchids (Orchidaceae), estimated by some specialists to include up to 35,000 species,[6] which often have highly specialized flowers that attract particular insects for pollination. The stamens are modified to produce pollen in clusters called pollinia, which become attached to insects that crawl into the flower. The flower shapes may force insects to pass by the pollen, which is "glued" to the insect. Some orchids are even more highly specialized, with flower shapes that mimic the shape of insects to attract them to 'mate' with the flowers, a few even have scents that mimic insect pheromones. Another large group of flowering plants is the Asteraceae or sunflower family with close to 22,000 species,[7] which also have highly modified inflorescences that are flowers collected together in heads composed of a composite of individual flowers called florets. Heads with florets of one sex, when the flowers are pistillate or functionally staminate, or made up of all bisexual florets, are called homogamous and can include discoid and liguliflorous type heads. Some radiate heads may be homogamous too. Plants with heads that have florets of two or more sexual forms are called heterogamous and include radiate and disciform head forms, though some radiate heads may be heterogamous too. Ferns[edit] Ferns typically produce large diploid sporophytes with rhizomes, roots and leaves; and on fertile leaves called sporangium, spores are produced. The spores are released and germinate to produce short, thin gametophytes that are typically heart shaped, small and green in color. The gametophytes or thallus, produce both motile sperm in the antheridia and egg cells in separate archegonia. After rains or when dew deposits a film of water, the motile sperm are splashed away from the antheridia, which are normally produced on the top side of the thallus, and swim in the film of water to the antheridia where they fertilize the egg. To promote out crossing or cross fertilization the sperm are released before the eggs are receptive of the sperm, making it more likely that the sperm will fertilize the eggs of different thallus. A zygote is formed after fertilization, which grows into a new sporophytic plant. The condition of having separate sporophyte and gametophyte plants is call alternation of generations. Other plants with similar reproductive means include the Psilotum, Lycopodium, Selaginella and Equisetum. Bryophytes[edit] Main articles: Alternation of generations and Bryophyte life cycle The bryophytes, which include liverworts, hornworts and mosses, reproduce both sexually and vegetatively. The gametophyte is the most commonly known phase of the plant. All are small plants found growing in moist locations and like ferns, have motile sperm with flagella and need water to facilitate sexual reproduction. These plants start as a haploid spore that grows into the dominate form, which is a multicellular haploid body with leaf-like structures that photosynthesize. Haploid gametes are produced in antherida and archegonia by mitosis. The sperm released from the antheridia respond to chemicals released by ripe archegonia and swim to them in a film of water and fertilize the egg cells, thus producing zygotes that are diploid. The zygote divides by mitotic division and grows into a sporophyte that is diploid. The multicellular diploid sporophyte produces structures called spore capsules. The spore capsules produce spores by meiosis, and when ripe, the capsules burst open and the spores are released. Bryophytes show considerable variation in their breeding structures and the above is a basic outline. In some species each gametophyte is one sex while other species produce both antheridia and archegonia on the same gametophyte which is thus hermaphrodite.[8]


Sexual morphology[edit] Main article: Plant reproductive morphology Many plants have evolved complex sexual reproductive systems, which is expressed in different combinations of their reproductive organs. Some species have separate male and female plants, and some have separate male and female flowers on the same plant, but the majority of plants have both male and female parts in the same flower. Some plants change their morphological expression depending on a number of factors like age, time of day, or because of environmental conditions. Plant sexual morphology also varies within different populations of some species.


See also[edit] Meiosis


References[edit] ^ Fritz, Robert E.; Simms, Ellen Louise (1992). Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. Chicago: University of Chicago Press. p. 359. ISBN 978-0-226-26554-4.  ^ http://www.lifescientist.com.au/article/29781/why_apomixis_genetic_gold ^ Introduction To Plant Science. Delmar Thomson Learning. p. 296. ISBN 978-1-4018-4188-1.  ^ a b Rooting cuttings of tropical trees. London: Commonwealth Science Council. 1993. p. 9. ISBN 978-0-85092-394-0.  ^ Reiley, H. Edward; Shry, Carroll L. (2004). Introductory horticulture. Albany, NY: Delmar/Thomson Learning. p. 54. ISBN 978-0-7668-1567-4.  ^ Orchidaceae in Flora of North America @ efloras.org ^ Asteraceae in Flora of North America @ efloras.org ^ Lovett Doust, Jon, and Lesley Lovett Doust. 1988. Plant reproductive ecology: patterns and strategies. New York: Oxford University Press. P 290.


External links[edit] Simple Video Tutorial on Reproduction in Plant v t e Botany History of botany Subdisciplines Plant systematics Ethnobotany Paleobotany Plant anatomy Plant ecology Phytogeography Geobotany Flora Phytochemistry Plant pathology Bryology Phycology Floristics Dendrology Plant groups Algae Archaeplastida Bryophyte Non-vascular plants Vascular plants Spermatophytes Pteridophyte Gymnosperm Angiosperm Plant morphology (glossary) Plant cells Cell wall Phragmoplast Plastid Plasmodesma Vacuole Tissues Meristem Vascular tissue Vascular bundle Ground tissue Mesophyll Cork Wood Storage organs Vegetative Root Rhizoid Bulb Rhizome Shoot Stem Leaf Petiole Cataphyll Bud Sessility Reproductive (Flower) Flower development Inflorescence Umbel Raceme Bract Pedicellate Flower Whorl Floral symmetry Floral diagram Floral formula Receptacle Hypanthium (Floral cup) Perianth Tepal Petal Sepal Sporophyll Gynoecium Ovary Ovule Stigma Archegonium Androecium Stamen Staminode Pollen Tapetum Gynandrium Gametophyte Sporophyte Plant embryo Fruit Fruit anatomy Berry Capsule Seed Seed dispersal Endosperm Surface structures Epicuticular wax Plant cuticle Epidermis Stoma Nectary Trichome Prickle Plant physiology Materials Nutrition Photosynthesis Chlorophyll Plant hormone Transpiration Turgor pressure Bulk flow Aleurone Phytomelanin Sugar Sap Starch Cellulose Plant growth and habit Secondary growth Woody plants Herbaceous plants Habit Vines Lianas Shrubs Subshrubs Trees Succulent plants Reproduction Evolution Ecology Alternation of generations Sporangium Spore Microsporangia Microspore Megasporangium Megaspore Pollination Pollinators Pollen tube Double fertilization Germination Evolutionary development Evolutionary history timeline Hardiness zone Plant taxonomy History of plant systematics Herbarium Biological classification Botanical nomenclature Botanical name Correct name Author citation International Code of Nomenclature for algae, fungi, and plants (ICN) - for Cultivated Plants (ICNCP) Taxonomic rank International Association for Plant Taxonomy (IAPT) Plant taxonomy systems Cultivated plant taxonomy Citrus taxonomy cultigen cultivar Group grex Practice Agronomy Floriculture Forestry Horticulture Lists Related topics Botanical terms Botanists by author abbreviation Botanical expedition Category Portal WikiProject Retrieved from "https://en.wikipedia.org/w/index.php?title=Plant_reproduction&oldid=819871753" Categories: Plant developmentFertilityPlant reproductionPlant sexuality


Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia Commons Languages العربيةEspañolEsperantoFrançaisGalegoՀայերենHrvatskiBahasa IndonesiaҚазақшаКыргызчаМакедонскиNederlandsPolskiРусскийSimple EnglishСрпски / srpskiதமிழ்中文 Edit links This page was last edited on 11 January 2018, at 18:56. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.160","walltime":"0.228","ppvisitednodes":{"value":804,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":54574,"limit":2097152},"templateargumentsize":{"value":309,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 143.836 1 -total"," 40.49% 58.237 1 Template:Reflist"," 29.86% 42.947 4 Template:Cite_book"," 23.02% 33.104 1 Template:Botany"," 22.22% 31.965 2 Template:Navbox"," 15.36% 22.091 1 Template:Sex_(biology)_sidebar"," 13.38% 19.248 1 Template:See_also"," 13.28% 19.101 1 Template:Sidebar"," 7.47% 10.746 2 Template:Portal-inline"," 5.71% 8.210 3 Template:Hlist"]},"scribunto":{"limitreport-timeusage":{"value":"0.054","limit":"10.000"},"limitreport-memusage":{"value":3510125,"limit":52428800}},"cachereport":{"origin":"mw1257","timestamp":"20180111185645","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":91,"wgHostname":"mw1267"});});


Sexual_reproduction_in_plants - Photos and All Basic Informations

Sexual_reproduction_in_plants More Links

OffspringPlantAsexual ReproductionSexual ReproductionGameteMutationsSeed PlantSeedEnlargeBryophyllumAsexual ReproductionBuddingFragmentation (reproduction)Fission (biology)Spore FormationVegetative PropagationCloningTiller (botany)ApomixisParthenogenesisBiological ProcessHerbaceous PlantWoodPerennial PlantPlant StemRootLeafClonal ColonyRametOrganismEmbryoHawkweedDandelionCitrusKentucky Blue GrassPseudogamyPlantletBulbilRhizomePolypodyIris (plant)Couch GrassUrticaStolonStrawberryPoaceaeFernAdventitiousBasal ShootRegeneration (biology)Root SystemElmDandelionRoseRoseRubusOnionHyacinth (plant)Narcissus (genus)TulipBulbPotatoDahliaTuberGladiolusCrocusCormLayeringPlant Tissue CultureCultivarFruit Tree PropagationCloningRootstockStool BedPlantInternodesRooting PowderPlant HormoneBlackberryAfrican VioletVervainGraftingNursery (horticulture)ApplePathogenSexual Reproduction Of PlantsCategory:SexSexSexual DimorphismMaleFemaleSexual DifferentiationFeminization (biology)VirilizationSex-determination SystemXY Sex-determination SystemX0 Sex-determination SystemZW Sex-determination SystemZ0 Sex-determination SystemTemperature-dependent Sex DeterminationHaplodiploidyHeterogametic SexHeterogametic SexAllosomeX ChromosomeY ChromosomeTestis-determining FactorHermaphroditeSequential HermaphroditismIntersexSexual ReproductionEvolution Of Sexual ReproductionAnisogamyIsogamyGerm CellMeiosisGametogenesisSpermatogenesisOogenesisGameteSpermatozoonEgg CellFertilisationExternal FertilizationInternal FertilizationSexual SelectionSexual Reproduction In AnimalsSexual IntercourseHuman ReproductionMating In FungiHuman SexualityPlant Reproductive MorphologyAnimal Sexual BehaviourHuman SexualityMechanics Of Human SexualitySexual Differentiation In HumansHuman Sexual ActivityPortal:SexualityPortal:BiologyTemplate:Sex SidebarTemplate Talk:Sex SidebarMeiosisGeneChromosomeFertilisationDiploidPlantAlgaeEmbryophyteAlternation Of GenerationsEvolution Of Sexual ReproductionOrigin And Function Of MeiosisHaploidChromosomeGameteMitosisDiploidZygoteSporophyteSporeMeiosisReduction DivisionFernGymnospermFlowering PlantOvulePollenEvolution Of Sexual ReproductionSpermAquatic EcosystemEvolutionary History Of PlantsAlternation Of GenerationsPaleozoicProgymnospermSeed FernConiferCordaitesGymnospermGametesInsectCarpelCycadophytaGinkgophytaFlowering PlantGametePollinationFertilizationFruitBiological DispersalGerminateStamenGametophytePollenCarpelDouble FertilizationFruitSelf-pollinationPollinationEnlargeEnlargeOrchidaceaePolliniumPheromoneAsteraceaeSporophyteRhizomeSporangiumSporeThallusAntheridiaArchegoniaZygoteAlternation Of GenerationPsilotumLycopodiumSelaginellaEquisetumAlternation Of GenerationsBryophyte Life CycleBryophyteMarchantiophytaHornwortMossVegetative ReproductionFlagellaPhotosynthesisSporangiumPlant Reproductive MorphologyMeiosisInternational Standard Book NumberSpecial:BookSources/978-0-226-26554-4International Standard Book NumberSpecial:BookSources/978-1-4018-4188-1International Standard Book NumberSpecial:BookSources/978-0-85092-394-0International Standard Book NumberSpecial:BookSources/978-0-7668-1567-4Template:BotanyTemplate Talk:BotanyBotanyHistory Of BotanyBranches Of BotanyHistory Of Plant SystematicsEthnobotanyPaleobotanyPlant AnatomyPlant EcologyPhytogeographyGeobotanical ProspectingFloraPhytochemistryPlant PathologyBryologyPhycologyFloristicsDendrologyPlantAlgaeArchaeplastidaBryophyteNon-vascular PlantVascular PlantSpermatophytePteridophyteGymnospermFlowering PlantPlant MorphologyGlossary Of Plant MorphologyPlant CellCell WallPhragmoplastPlastidPlasmodesmaVacuoleTissue (biology)MeristemVascular TissueVascular BundleGround TissueLeafCork CambiumWoodStorage OrganRootRhizoidBulbRhizomeShootPlant StemLeafPetiole (botany)CataphyllBudSessility (botany)Plant Reproductive MorphologyABC Model Of Flower DevelopmentInflorescenceUmbelRacemeBractPedicel (botany)FlowerWhorl (botany)Floral SymmetryFloral DiagramFloral FormulaReceptacle (botany)HypanthiumPerianthTepalPetalSepalSporophyllGynoeciumOvary (botany)OvuleStigma (botany)ArchegoniumStamenStamenStaminodePollenTapetum (botany)Column (botany)GametophyteSporophyteEmbryoFruitFruit AnatomyBerry (botany)Capsule (fruit)SeedSeed DispersalEndospermEpicuticular WaxPlant CuticleEpidermis (botany)StomaNectarTrichomeThorns, Spines, And PricklesPlant PhysiologyPlant NutritionPhotosynthesisChlorophyllPlant HormoneTranspirationTurgor PressureBulk MovementAleuronePhytomelaninSugarSapStarchCelluloseSecondary GrowthWoody PlantHerbaceous PlantHabit (biology)VineLianaShrubSubshrubTreeSucculent PlantPlant EvolutionPlant EcologyAlternation Of GenerationsSporangiumSporeMicrosporangiaMicrosporeSporangiumMegasporePollinationPollinatorPollen TubeDouble FertilizationGerminationPlant Evolutionary Developmental BiologyEvolutionary History Of PlantsTimeline Of Plant EvolutionHardiness ZonePlant TaxonomyHistory Of Plant SystematicsHerbariumTaxonomy (biology)Botanical NomenclatureBotanical NameCorrect NameAuthor Citation (botany)International Code Of Nomenclature For Algae, Fungi, And PlantsInternational Code Of Nomenclature For Cultivated PlantsTaxonomic RankInternational Association For Plant TaxonomyList Of Systems Of Plant TaxonomyCultivated Plant TaxonomyCitrus TaxonomyCultigenCultivarCultivar GroupGrex (horticulture)AgronomyFloricultureForestryHorticultureGlossary Of Botanical TermsList Of BotanistsList Of Botanists By Author Abbreviation (W–Z)Botanical ExpeditionCategory:BotanyPortal:PlantsWikipedia:WikiProject PlantsHelp:CategoryCategory:Plant DevelopmentCategory:FertilityCategory:Plant ReproductionCategory:Plant SexualityDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer



view link view link view link view link view link