Contents 1 History 2 Extracellular signals 3 Mechanism 4 Dynamics 5 In cancer 6 See also 7 References

History[edit] Originally, Temin showed that chicken cells reach a point at which they are committed to replicate their DNA and are not dependent on extracellular signals.[2] About 20 years later, in 1973, Arthur Pardee demonstrated that a single restriction point exists in G1. Previously, G1 had been defined simply as the time between mitosis and S phase. No molecular or morphological place-markers for a cell's position in G1 were known. Pardee used a double-block method in which he shifted cells from one cell cycle block (such as critical amino acid withdrawal or serum withdrawal) to another and compared each block's efficiency at preventing progression to S phase. He found that both blocks in all cases examined were equally efficient at blocking S phase progression, indicating that they must all act at the same point in G1, which he termed the "restriction point", or R-point.[3] In 1985, Zetterberg and Larsson discovered that, in all stages of the cell cycle, serum deprivation results in inhibition of protein synthesis. Only in postmitotic cells (i.e. cells in early G1) did serum withdrawal force cells into quiescence (G0). In fact, Zetterberg found that virtually all of the variability in cell cycle length can be accounted for in the time it takes the cell to move from the restriction point to S phase.[4]

Extracellular signals[edit] Except for early embryonic development, most cells in multicellular organisms persist in a quiescent state known as G0, where proliferation does not occur, and cells are typically terminally differentiated; other specialized cells continue to divide into adulthood. For both of these groups of cells, a decision has been made to either exit the cell cycle and become quiescent (G0), or to reenter G1. A cell's decision to enter, or reenter, the cell cycle is made before S-phase in G1 at what is known as the restriction point, and is determined by the combination of promotional and inhibitory extracellular signals that are received and processed. Before the R-point, a cell requires these extracellular stimulants to begin progressing through the first three sub-phases of G1 (competence, entry G1a, progression G1b). After the R-point has been passed in G1b, however, extracellular signals are no longer required, and the cell is irreversibly committed to preparing for DNA duplication. Further progression is regulated by intracellular mechanisms. Removal of stimulants before the cell reaches the R-point may result in the cell's reversion to quiescence.[1][2] Under these conditions, cells are actually set back in the cell cycle, and will require additional time (about 8 hours more than the withdrawal time in culture) after passing the restriction point to enter S phase.[2]

Mechanism[edit] Signals from extracellular growth factors are transduced in a typical manner. Growth factor binds to receptors on the cell surface, and a variety of phosphorylation cascades result in Ca2+ uptake and protein phosphorylation. Phosphoprotein levels are counterbalanced by phosphatases. Ultimately, transcriptional activation of certain target genes occurs. Extracellular signaling must be maintained, and the cell must also have access to sufficient nutrient supplies to support rapid protein synthesis. Accumulation of cyclin D's are essential.[5] Cyclin D-bound cdks 4 and 6 are activated by cdk-activating kinase and drive the cell towards the restriction point. Cyclin D, however has a high turnover rate (t1/2<25 min). It is because of this quick turnover rate that the cell is extremely sensitive to mitogenic signaling levels, which not only stimulate cyclin D production, but also help to stabilize cyclin D within the cell.[5][6] In this way, cyclin D acts as a mitogenic signal sensor.[6] Cdk inhibitors (CKI), such as the Ink4 proteins and p21, help to prevent improper cyclin-cdk activity. Active cyclin D-cdk complexes phosphorylate retinoblastoma protein (pRb) in the nucleus. Unphosphorylated Rb acts as an inhibitor of G1 by preventing E2F-mediated transcription. Once phosphorylated, E2F activates the transcription of cyclins E and A.[5][6][7] Active cyclin E-cdk begins to accumulate and completes pRb phosphorylation, as shown in the figure.[8]

Dynamics[edit] A paper published by the Lingchong You and Joe Nevins groups at Duke University in 2008 demonstrated that the a bistable hysteric E2F switch underlies the restriction point. E2F promotes its own activation, and also promotes the inhibition of its own inhibitor (pRb), forming two feedback loops (among others) that are important in establishing bistable systems. The authors of this study used a destabilized GFP-system under the control of the E2F promoter as a readout of E2F activity. Serum-starved cells were stimulated with varying serum concentrations, and the GFP readout was recorded at a single-cell level. They found that the GFP reporter was either on or off, indicating that E2F was either completely activated or deactivated at all of the different serum levels analyzed. Further experiments, in which they analyzed the history-dependence of the E2F system confirmed that it operates as a hysteretic bistable switch.[9]

In cancer[edit] Cancer can be seen as a disruption of normal restriction point function, as cells continually and inappropriately reenter the cell cycle, and do not enter G0.[1] Mutations at many steps in the pathway towards the restriction point can result in cancerous growth of cells. Some of the genes most commonly mutated in cancer include Cdks and CKIs; overactive Cdks or underactive CKIs lower the stringency of the restriction point, allowing more cells to bypass senescence.[7] E2F Dynamics at the restriction point[8] The restriction point is an important consideration in the development of new drug therapies. Under normal physiological conditions, all cell proliferation is regulated by the restriction point. This can be exploited and used as a way to protect non-cancerous cells from chemotherapy treatments. Chemotherapy drugs typically attack cells that are proliferating rapidly. By using drugs that inhibit completion of the restriction point, such as growth factor receptor inhibitors, normal cells are prevented from proliferating, and are thus protected from chemotherapy treatments.[6]

See also[edit] S-phase-promoting factor

References[edit] ^ a b c Pardee, A. (1989). "G1 events and regulation of cell proliferation". Science. 246 (4930): 603–8. Bibcode:1989Sci...246..603P. doi:10.1126/science.2683075. PMID 2683075.  ^ a b c Zetterberg, Anders; Larsson, Olle; Wiman, Klas G (1995). "What is the restriction point?". Current Opinion in Cell Biology. 7 (6): 835–42. doi:10.1016/0955-0674(95)80067-0. PMID 8608014.  ^ Pardee, Arthur B. (1974). "A Restriction Point for Control of Normal Animal Cell Proliferation". Proceedings of the National Academy of Sciences. 71 (4): 1286–90. Bibcode:1974PNAS...71.1286P. doi:10.1073/pnas.71.4.1286. JSTOR 63311. PMC 388211 . PMID 4524638.  ^ Zetterberg, A.; Larsson, Olle (1985). "Kinetic Analysis of Regulatory Events in G1 Leading to Proliferation or Quiescence of Swiss 3T3 Cells". Proceedings of the National Academy of Sciences. 82 (16): 5365–9. Bibcode:1985PNAS...82.5365Z. doi:10.1073/pnas.82.16.5365. JSTOR 25651. PMC 390569 . PMID 3860868.  ^ a b c Sherr, Charles J.; Roberts, James M. (1995). "Inhibitors of mammalian G1 cyclin-dependent kinases". Genes & Development. 9 (10): 1149–63. doi:10.1101/gad.9.10.1149. PMID 7758941.  ^ a b c d Blagosklonny, Mikhail V.; Pardee, Arthur B. (2001). "The Restriction Point of the Cell Cycle". In Blagosklonny, Mikhail V. Cell Cycle Checkpoints and Cancer. Austin: Landes Bioscience. pp. 52–?. ISBN 978-1-58706-067-0.  ^ a b Malumbres, Marcos; Barbacid, Mariano (2001). "Milestones in Cell Division to Cycle or Not to Cycle: A Critical Decision in Cancer". Nature Reviews Cancer. 1 (3): 222–31. doi:10.1038/35106065. PMID 11902577.  ^ a b Holsberger, Denise R.; Cooke, Paul S. (2005). "Understanding the role of thyroid hormone in Sertoli cell development: A mechanistic hypothesis". Cell and Tissue Research. 322 (1): 133–40. doi:10.1007/s00441-005-1082-z. PMID 15856309.  ^ Yao, Guang; Lee, Tae Jun; Mori, Seiichi; Nevins, Joseph R.; You, Lingchong (2008). "A bistable Rb–E2F switch underlies the restriction point". Nature Cell Biology. 10 (4): 476–82. doi:10.1038/ncb1711. PMID 18364697.  v t e Cell cycle proteins Cyclin A (A1, A2) B (B1, B2, B3) D (D1, D2, D3) E (E1, E2) CDK 1 2 3 4 5 6 7 8 9 10 CDK-activating kinase CDK inhibitor INK4a/ARF (p14arf/p16, p15, p18, p19) cip/kip (p21, p27, p57) P53 p63 p73 family p53 p63 p73 Other Cdc2 Cdc25 Cdc42 Cellular apoptosis susceptibility protein E2F Maturation promoting factor Wee Cullin (CUL7) Phases and checkpoints Interphase G1 phase S phase G2 phase M phase Mitosis (Preprophase Prophase Prometaphase Metaphase Anaphase Telophase) Cytokinesis Cell cycle checkpoints Restriction point Spindle checkpoint Postreplication checkpoint Other cellular phases Apoptosis G0 phase Meiosis Retrieved from "" Categories: Cell cycle

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version Languages Русский Edit links This page was last edited on 10 September 2017, at 16:52. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.144","walltime":"0.171","ppvisitednodes":{"value":700,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":38884,"limit":2097152},"templateargumentsize":{"value":81,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 127.398 1 -total"," 86.11% 109.697 1 Template:Reflist"," 60.60% 77.205 8 Template:Cite_journal"," 13.84% 17.628 1 Template:Cell_cycle"," 12.97% 16.521 2 Template:Navbox"," 4.76% 6.070 1 Template:Cite_book"," 1.28% 1.630 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.064","limit":"10.000"},"limitreport-memusage":{"value":2817169,"limit":52428800}},"cachereport":{"origin":"mw1220","timestamp":"20180115083016","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":89,"wgHostname":"mw1324"});});

Restriction_point - Photos and All Basic Informations

Restriction_point More Links

G1 PhaseCell CycleCell CycleArthur PardeeG1 PhaseS PhaseG0 PhaseS PhaseSignal TransductionGrowth FactorCyclin DCyclin-dependent KinaseCyclin-dependent Kinase 4Cyclin-dependent KinaseCDK-activating KinaseCDK InhibitorInk4P21Retinoblastoma ProteinE2FDuke UniversityHysteresisE2FE2FRetinoblastoma ProteinFeedbackGreen Fluorescent ProteinE2FReporter GeneE2FReporter GeneE2FHysteresisCancerCell CycleEnlargeChemotherapyGrowth Factor Receptor InhibitorS-phase-promoting FactorBibcodeDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierJSTORPubMed CentralPubMed IdentifierBibcodeDigital Object IdentifierJSTORPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/978-1-58706-067-0Digital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierTemplate:Cell Cycle ProteinsTemplate Talk:Cell Cycle ProteinsCell CycleProteinCyclinCyclin ACyclin A1Cyclin A2Cyclin BCyclin B1Cyclin B2Cyclin DCyclin D1Cyclin D2Cyclin D3Cyclin ECyclin E1Cyclin E2Cyclin-dependent KinaseCyclin-dependent Kinase 1Cyclin-dependent Kinase 2Cyclin-dependent Kinase 3Cyclin-dependent Kinase 4Cyclin-dependent Kinase 5Cyclin-dependent Kinase 6Cyclin-dependent Kinase 7Cyclin-dependent Kinase 8Cyclin-dependent Kinase 9Cyclin-dependent Kinase 10CDK-activating KinaseCyclin-dependent Kinase Inhibitor ProteinCell CycleP14arfP16CDKN2BCDKN2CCDKN2DCell CycleP21CDKN1BCyclin-dependent Kinase Inhibitor 1CP53 P63 P73 FamilyP53TP63P73Cdk1Cdc25CDC42Cellular Apoptosis Susceptibility ProteinE2FMaturation Promoting FactorWee1CullinCUL7InterphaseG1 PhaseS PhaseG2 PhaseCell DivisionMitosisPreprophaseProphasePrometaphaseMetaphaseAnaphaseTelophaseCytokinesisCell Cycle CheckpointSpindle CheckpointPostreplication CheckpointApoptosisG0 PhaseMeiosisHelp:CategoryCategory:Cell CycleDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link