Contents 1 Classic model systems for understanding gastrulation 2 Protostomes versus deuterostomes 3 Sea urchins 3.1 Symmetry breaking 3.2 Germ layer determination 3.3 Cell internalization 4 Amphibians 4.1 Symmetry breaking 4.2 Germ layer determination 4.3 Cell internalization 5 Amniotes 5.1 Overview 5.2 Symmetry breaking 5.3 Germ layer determination 5.4 Cell internalization 6 Gastrulation in vitro 7 See also 8 References 8.1 Notes 8.2 Bibliography 9 Further reading 10 External links

Classic model systems for understanding gastrulation[edit] Gastrulation is highly variable across the animal kingdom but has underlying similarities. Gastrulation has been studied in many animals, but some models have been used for longer than others. Furthermore, it is easier to study development in animals that develop outside the mother. Animals whose gastrulation is understood in the greatest detail include: Mollusc Sea urchin Frog Chicken

Protostomes versus deuterostomes[edit] The distinction between protostomes and deuterostomes is based on the direction in which the mouth (stoma) develops in relation to the blastopore. Protostome derives from the Greek word protostoma meaning "first mouth"(πρώτος + στόμα) whereas Deuterostome's etymology is "second mouth" from the words second and mouth (δεύτερος + στόμα). The major distinctions between deuterostomes and protostomes are found in embryonic development: Mouth/anus In protostome development, the first opening in development, the blastopore, becomes the animal's mouth. In deuterostome development, the blastopore becomes the animal's anus. Cleavage Protostomes have what is known as spiral cleavage which is determinate, this meaning that the fate of the cells is determined as they are formed. Deuterostomes have what is known as radial cleavage that is indeterminate.

Sea urchins[edit] Sea urchins Euechinoidea have been an important model system in developmental biology since the 19th century.[10] Their gastrulation is often considered the archetype for invertebrate deuterostomes.[11] Symmetry breaking[edit] Germ layer determination[edit] Sea urchins exhibit highly stereotyped cleavage patterns and cell fates. Maternally deposited mRNAs establish the organizing center of the sea urchin embryo. Canonical Wnt and Delta-Notch signaling progressively segregate progressive endoderm and mesoderm.[12] Cell internalization[edit] In Euechinoids the first cells to internalize are the primary mesenchyme cells (PMCs), which have a skeletogenic fate, which ingress during the blastula stage. Gastrulation – internalization of the prospective endoderm and non-skeletogenic mesoderm – begins shortly thereafter with invagination and other cell rearrangements the vegetal pole, which contribute approximately 30% to the final archenteron length. The gut's final length depends on cell rearrangements within the archenteron.[13]

Amphibians[edit] It has been suggested that Early stages of embryogenesis of tailless amphibians be merged into this article. (Discuss) Proposed since March 2017. Tailless amphibians (Anura) are a classic model system for gastrulation. Symmetry breaking[edit] The sperm contributes one of the two mitotic asters needed to complete first cleavage. The sperm can enter anywhere in the animal half of the egg but its exact point of entry will break the egg's radial symmetry by organizing the cytoskeleton. Prior to first cleavage, the egg's cortex rotates relative to the internal cytoplasm by the coordinated action of microtubules, in a process known as cortical rotation. This displacement brings maternally loaded determinants of cell fate from the equatorial cytoplasm and vegetal cortex into contact, and together these determinants set up the organizer. Thus, the area on the vegetal side opposite the sperm entry point will become the organizer.[14] Hilde Mangold, working in the lab of Hans Spemann, demonstrated that this special "organizer" of the embryo is necessary and sufficient to induce gastrulation.[15][16] Germ layer determination[edit] Specification of endoderm depends on rearrangement of maternally deposited determinants, leading to nuclearization of Beta-catenin. Mesoderm is induced by signaling from the presumptive endoderm to cells that would otherwise become ectoderm.[14] Cell internalization[edit] The dorsal lip of the blastopore is the mechanical driver of gastrulation. The first sign of invagination seen in this video of frog gastrulation is the dorsal lip.

Amniotes[edit] Overview[edit] In amniotes (reptiles, birds and mammals), gastrulation involves the creation of the blastopore, an opening into the archenteron. Note that the blastopore is not an opening into the blastocoel, the space within the blastula, but represents a new inpocketing that pushes the existing surfaces of the blastula together. In amniotes, gastrulation occurs in the following sequence: (1) the embryo becomes asymmetric; (2) the primitive streak forms; (3) cells from the epiblast at the primitive streak undergo an epithelial to mesenchymal transition and ingress at the primitive streak to form the germ layers.[4] Symmetry breaking[edit] In preparation for gastrulation, the embryo must become asymmetric along both the proximal-distal axis and the anterior-posterior axis. The proximal-distal axis is formed when the cells of the embryo form the “egg cylinder,” which consists of the extraembryonic tissues, which give rise to structures like the placenta, at the proximal end and the epiblast at the distal end. Many signaling pathways contribute to this reorganization, including BMP, FGF, nodal, and Wnt. Visceral endoderm surrounds the epiblast. The distal visceral endoderm (DVE) migrates to the anterior portion of the embryo, forming the “anterior visceral endoderm” (AVE). This breaks anterior-posterior symmetry and is regulated by nodal signaling.[4] Epithelial to Mesenchmyal Cell Transition – loss of cell adhesion leads to constriction and extrusion of newly mesenchymal cell. Germ layer determination[edit] The primitive streak is formed at the beginning of gastrulation and is found at the junction between the extraembryonic tissue and the epiblast on the posterior side of the embryo and the site of ingression.[17] Formation of the primitive streak is reliant upon nodal signaling[4] in the Koller's sickle within the cells contributing to the primitive streak and BMP4 signaling from the extraembryonic tissue.[17][18] Furthermore, Cer1 and Lefty1 restrict the primitive streak to the appropriate location by antagonizing nodal signaling.[19] The region defined as the primitive streak continues to grow towards the distal tip.[4] During the early stages of development, the primitive streak is the structure that will establish bilateral symmetry, determine the site of gastrulation and initiate germ layer formation. To form the streak, reptiles, birds and mammals arrange mesenchymal cells along the prospective midline, establishing the first embryonic axis, as well as the place where cells will ingress and migrate during the process of gastrulation and germ layer formation.[20] The primitive streak extends through this midline and creates the antero-posterior body axis,[21] becoming the first symmetry-breaking event in the embryo, and marks the beginning of gastrulation.[22] This process involves the ingression of mesoderm and endoderm progenitors and their migration to their ultimate position,[21][23] where they will differentiate into the three germ layers.[20] The localization of the cell adhesion and signaling molecule beta-catenin is critical to the proper formation of the organizer region that is responsible for initiating gastrulation. Cell internalization[edit] In order for the cells to move from the epithelium of the epiblast through the primitive streak to form a new layer, the cells must undergo an epithelial to mesenchymal transition (EMT) to lose their epithelial characteristics, such as cell-cell adhesion. FGF signaling is necessary for proper EMT. FGFR1 is needed for the up regulation of SNAI1, which down regulates E-cadherin, causing a loss of cell adhesion. Following the EMT, the cells ingress through the primitive streak and spread out to form a new layer of cells or join existing layers. FGF8 is implicated in the process of this dispersal from the primitive streak.[19]

Gastrulation in vitro[edit] There have been a number of attempts to understand the processes of Gastrulation using in vitro techniques in parallel and complementary to studies in embryos, usually though the use of 2D[24][25][26] and 3D cell (Embryonic organoids) culture techniques[27][28][29] using Embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). These are associated with number of clear advantages in using tissue-culture based protocols, some of which include reducing the cost of associated in vivo work (thereby reducing, replacing and refining the use of animals in experiments; the 3Rs), being able to accurately apply agonists/antagonists in spatially and temporally specific manner[28][29] which may technically difficult to perform during Gastrulation. However, it is important to relate the observations in culture to the processes occurring in the embryo for context. To illustrate this, the guided differentiation of mouse ESCs has resulted in generating primitive streak-like cells that display many of the characteristics of epiblast cells that traverse through the primitive streak[24] (e.g. transient brachyury up regulation and the cellular changes associated with an epithelial to mesenchymal transition[24]), and human ESCs cultured on micro patterns, treated with BMP4, can generate spatial differentiation pattern similar to the arrangement of the germ layers in the human embryo.[25][26] Finally, using 3D embryoid body- and organoid-based techniques, small aggregates of mouse ESCs (Embryonic Organoids, or Gastruloids) are able to show a number of processes of early mammalian embryo development such as symmetry-breaking, polarisation of gene expression, gastrulation-like movements, axial elongation and the generation of all three embryonic axes (anteroposterior, dorsoventral and left-right axes).[27][28][29][30]

See also[edit] Blastocyst Deuterostome Fate mapping Primitive knot Invagination Neurulation Protostome Vegetal rotation

References[edit] Notes[edit] ^ Mundlos 2009: p. 422 ^ a b McGeady, 2004: p. 34 ^ Hall, 1998: pp. 132-134 ^ a b c d e Arnold & Robinson, 2009 ^ Hall, 1998: p. 177 ^ Harrison 2011: p. 206 ^ Wolpert L (2008) The triumph of the embryo. Courier Corporation, page 12. ISBN 9780486469294 ^ Ereskovsky 2010: p. 236 ^ Gilbert 2010: p. 164. ^ Laubichler, M.D. and Davidson, E. H. (2008). "Boveri's long experiment: sea urchin merogones and the establishment of the role of nuclear chromosomes in development". "Developmental Biology". "314(1):1-11". "doi: 10.1016/j.ydbio.2007.11.024". ^ McClay, David R.; Gross, J.M.; Range, Ryan; Peterson, R.E.; Bradham, Cynthia (2004). "Chapter 9: Sea Urchin Gastrulation". In Stern, Claudio D. Gastrulation: From Cells to Embryos. Cold Spring Harbor Laboratory Press. pp. 123–137. ISBN 0-87969-707-5.  ^ McClay, D. R. 2009. Cleavage and Gastrulation in Sea Urchin. eLS. DOI: 10.1002/9780470015902.a0001073.pub2 ^ Hardin J D. Context-dependent cell behaviors during gastrulation. Semin. Dev. Biol. 1990;1:335–345. ^ a b Gilbert, Scott F. (2000). "Axis Formation in Amphibians: The Phenomenon of the Organizer, The Progressive Determination of the Amphibian Axes". Developmental Biology. Sinauer Associates.  ^ Spemann, H. and Mangold, H. (1924). "Über Induktion von Embryonanlagen durch Implantation artfremder Organisatoren". Roux' Arch. f. Entw. mech. 100: 599-638. ^ De Robertis, Edward. (2006). "Spemann's organizer and self-regulation in amphibian embryos". "Nature Reviews Molecular Cell Biology". "7, 296-302". "doi:10.1038/nrm1855". ^ a b Tam & Behringer, 1997 ^ Catala, 2005: p. 1535 ^ a b Tam, P.P.; Loebel, D.A (2007). "Gene function in mouse embryogenesis: get set for gastrulation". Nat Rev Genet. 8 (5): 368–81. doi:10.1038/nrg2084. PMID 17387317.  ^ a b Mikawa T, Poh AM, Kelly KA, Ishii Y, Reese DE (2004). "Induction and patterning of the primitive streak, an organizing center of gastrulation in the amniote". Dev Dyn. 229 (3): 422–32. doi:10.1002/dvdy.10458. PMID 14991697.  ^ a b Downs KM. (2009). "The enigmatic primitive streak: prevailing notions and challenges concerning the body axis of mammals". BioEssays. 31 (8): 892–902. doi:10.1002/bies.200900038. PMC 2949267 . PMID 19609969.  ^ Chuai M, Zeng W, Yang X, Boychenko V, Glazier JA, Weijer CJ (2006). "Cell movement during chick primitive streak formation". Dev. Biol. 296 (1): 137–49. doi:10.1016/j.ydbio.2006.04.451. PMC 2556955 . PMID 16725136.  ^ Chuai M, Weijer CJ (2008). "The mechanisms underlying primitive streak formation in the chick embryo". Curr Top Dev Biol. 81: 135–56. doi:10.1016/S0070-2153(07)81004-0. PMID 18023726.  ^ a b c Turner, David A.; Rué, Pau; Mackenzie, Jonathan P.; Davies, Eleanor; Martinez Arias, Alfonso (2014-01-01). "Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells". BMC Biology. 12: 63. doi:10.1186/s12915-014-0063-7. ISSN 1741-7007. PMC 4171571 . PMID 25115237.  ^ a b Warmflash, Aryeh; Sorre, Benoit; Etoc, Fred; Siggia, Eric D; Brivanlou, Ali H. "A method to recapitulate early embryonic spatial patterning in human embryonic stem cells". Nature Methods. 11 (8): 847–854. doi:10.1038/nmeth.3016. PMC 4341966 . PMID 24973948.  ^ a b Etoc, Fred; Metzger, Jakob; Ruzo, Albert; Kirst, Christoph; Yoney, Anna; Ozair, M. Zeeshan; Brivanlou, Ali H.; Siggia, Eric D. "A Balance between Secreted Inhibitors and Edge Sensing Controls Gastruloid Self-Organization". Developmental Cell. 39 (3): 302–315. doi:10.1016/j.devcel.2016.09.016. PMC 5113147 . PMID 27746044.  ^ a b Brink, Susanne C. van den; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A.; Arias, Alfonso Martinez (2014-11-15). "Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells". Development. 141 (22): 4231–4242. doi:10.1242/dev.113001. ISSN 0950-1991. PMC 4302915 . PMID 25371360.  ^ a b c Turner, David Andrew; Glodowski, Cherise R.; Luz, Alonso-Crisostomo; Baillie-Johnson, Peter; Hayward, Penny C.; Collignon, Jérôme; Gustavsen, Carsten; Serup, Palle; Schröter, Christian (2016-05-13). "Interactions between Nodal and Wnt signalling Drive Robust Symmetry Breaking and Axial Organisation in Gastruloids (Embryonic Organoids)". bioRxiv 051722 .  ^ a b c Turner, David; Alonso-Crisostomo, Luz; Girgin, Mehmet; Baillie-Johnson, Peter; Glodowski, Cherise R.; Hayward, Penelope C.; Collignon, Jérôme; Gustavsen, Carsten; Serup, Palle (2017-01-31). "Gastruloids develop the three body axes in the absence of extraembryonic tissues and spatially localised signalling". bioRxiv 104539 .  ^ Turner, David A.; Girgin, Mehmet; Alonso-Crisostomo, Luz; Trivedi, Vikas; Baillie-Johnson, Peter; Glodowski, Cherise R.; Hayward, Penelope C.; Collignon, Jérôme; Gustavsen, Carsten (2017-11-01). "Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids". Development. 144 (21): 3894–3906. doi:10.1242/dev.150391. ISSN 0950-1991. PMID 28951435.  Bibliography[edit] Arnold, Sebastian J.; Robertson, Elizabeth J. (2009). "Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo". Nat. Rev. Mol. Cell Biol. 10 (2): 91–103. doi:10.1038/nrm2618. PMID 19129791.  Catala, Martin (2005). "Embryology of the Spine and Spinal Cord". In Tortori-Donati, Paolo et al. Pediatric Neuroradiology: Brain. Springer. ISBN 978-3-540-41077-5. CS1 maint: Uses editors parameter (link) Ereskovsky, Alexander V. (2010). The Comparative Embryology of Sponges. Springer. ISBN 978-90-481-8574-0.  Gilbert, Scott F. (2010). Developmental Biology (Ninth ed.). Sinauer Associates. ISBN 978-0-87893-558-1.  Hall, Brian Keith (1998). "8.3.3 The gastrula and gastrulation". Evolutionary developmental biology (2nd ed.). The Netherlands: Kluwer Academic Publishers. ISBN 978-0-412-78580-1.  Harrison, Lionel G. (2011). The Shaping of Life: The Generation of Biological Pattern. Cambridge University Press. ISBN 978-0-521-55350-6.  McGeady, Thomas A., ed. (2006). "Gastrulation". Veterinary embryology. Wiley-Blackwell. ISBN 978-1-4051-1147-8.  Mundlos, Stefan (2009). "Gene action: developmental genetics". In Speicher, Michael et al. Vogel and Motulsky's Human Genetics: Problems and Approaches (4th ed.). Springer. doi:10.1007/978-3-540-37654-5. ISBN 978-3-540-37653-8. CS1 maint: Uses editors parameter (link) Tam, Patrick P.L.; Behringer, Richard R. (1997). "Mouse gastrulation: the formation of a mammalian body plan". Mech. Dev. 68 (1–2): 3–25. doi:10.1016/S0925-4773(97)00123-8. PMID 9431800. 

Further reading[edit] Baron, Margaret H. (2001). "Embryonic Induction of Mammalian Hematopoiesis and Vasculogenesis". In Zon, Leonard I. Hematopoiesis: a developmental approach. Oxford University Press. ISBN 978-0-19-512450-7.  Cullen, K.E. (2009). "embryology and early animal development". Encyclopedia of life science, Volume 2. Infobase. ISBN 978-0-8160-7008-4.  Forgács, G. & Newman, Stuart A. (2005). "Cleavage and blastula formation". Biological physics of the developing embryo. Cambridge University Press. ISBN 978-0-521-78337-8. CS1 maint: Uses authors parameter (link) Forgács, G. & Newman, Stuart A. (2005). "Epithelial morphogenesis: gastrulation and neurulation". Biological physics of the developing embryo. Cambridge University Press. ISBN 978-0-521-78337-8. CS1 maint: Uses authors parameter (link) Hart, Nathan H. & Fluck, Richard A. (1995). "Epiboly and Gastrulation". In Capco, David. Cytoskeletal mechanisms during animal development. Academic Press. ISBN 978-0-12-153131-7. CS1 maint: Uses authors parameter (link) Knust, Elizabeth (1999). "Gastrulation movements". In Birchmeier, Walter; Birchmeier, Carmen. Epithelial Morphogenesis in Development and Disease. CRC Press. pp. 152–153. ISBN 978-90-5702-419-1.  Kunz, Yvette W. (2004). "Gastrulation". Developmental biology of Teleost fishes. Springer. ISBN 978-1-4020-2996-7.  Nation, James L., ed. (2009). "Gastrulation". Insect physiology and biochemistry. CRC Press. ISBN 978-0-8493-1181-9.  Ross, Lawrence M.; Lamperti, Edward D., eds. (2006). "Human Ontogeny: Gastrulation, Neurulation, and Somite Formation". Atlas of anatomy: general anatomy and musculoskeletal system. Thieme. ISBN 978-3-13-142081-7.  Sanes, Dan H. et al. (2006). "Early embryology of metazoans". Development of the nervous system (2nd ed.). Academic Press. pp. 1–2. ISBN 978-0-12-618621-5. CS1 maint: Uses authors parameter (link) Stanger, Ben Z. & Melton, Douglas A. (2004). "Development of Endodermal Derivatives in the Lungs, Liver, Pancreas, and Gut". In Epstein, Charles J. et al. Inborn errors of development: the molecular basis of clinical disorders of morphogenesis. Oxford University Press. ISBN 978-0-19-514502-1. CS1 maint: Uses authors parameter (link) CS1 maint: Uses editors parameter (link)

External links[edit] Gastrulation animations Gastrulation illustrations and movies from Gastrulation: From Cells To Embryo edited by Claudio Stern v t e Human embryogenesis in the first three weeks Week 1 Fertilization Oocyte activation Zygote Cleavage Blastomere Morula Blastocoele Blastocyst Blastula Inner cell mass Trophoblast Week 2 (Bilaminar) Hypoblast Epiblast Week 3 (Trilaminar) Germ layers Archenteron/Primitive streak Primitive pit Primitive knot/Blastopore Primitive groove Gastrula Gastrulation Regional specification Embryonic disc Ectoderm Surface ectoderm Neuroectoderm Somatopleuric mesenchyme Neurulation Neural crest Endoderm Splanchnopleuric mesenchyme Mesoderm Axial mesoderm Paraxial Somite Somitomere Intermediate Lateral plate Intraembryonic coelom Splanchnopleuric mesenchyme Somatopleuric mesenchyme Retrieved from "" Categories: Animal developmental biologyEmbryologyGastrulationHidden categories: Articles which use infobox templates with no data rowsArticles to be merged from March 2017All articles to be mergedCS1 maint: Uses editors parameterCS1 maint: Uses authors parameter

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia CommonsWikiquote Languages AfrikaansالعربيةБеларускаяBosanskiCatalàDeutschEestiEspañolفارسیFrançaisGaeilge한국어ՀայերենHrvatskiItalianoעבריתҚазақшаKreyòl ayisyenКыргызчаLatinaNorskOccitanPolskiPortuguêsРусскийSimple EnglishСрпски / srpskiSuomiТоҷикӣTürkçeУкраїнська中文 Edit links This page was last edited on 5 December 2017, at 05:49. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.480","walltime":"0.563","ppvisitednodes":{"value":3191,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":97597,"limit":2097152},"templateargumentsize":{"value":1549,"limit":2097152},"expansiondepth":{"value":16,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 466.817 1 -total"," 38.14% 178.048 1 Template:Reflist"," 25.04% 116.913 20 Template:Cite_book"," 22.91% 106.959 1 Template:Infobox_embryology"," 21.90% 102.254 1 Template:Infobox_anatomy"," 18.93% 88.360 1 Template:Infobox"," 14.89% 69.499 12 Template:Cite_journal"," 9.46% 44.163 1 Template:Merge_from"," 5.73% 26.752 1 Template:Mbox"," 4.94% 23.050 1 Template:ISBN"]},"scribunto":{"limitreport-timeusage":{"value":"0.235","limit":"10.000"},"limitreport-memusage":{"value":6005089,"limit":52428800}},"cachereport":{"origin":"mw1211","timestamp":"20180113060154","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":81,"wgHostname":"mw1212"});});

Gastrulation - Photos and All Basic Informations

Gastrulation More Links

Anatomical TerminologyEmbryogenesisAnimalsBlastulaEpitheliumCellular DifferentiationAnatomical Terms Of LocationAnatomical Terms Of LocationTriploblastyGerm LayersEctodermMesodermEndodermDiploblastyCnidariaCtenophoraCleavage (embryo)BlastulaOrganogenesisTissue (biology)Organ (anatomy)Epidermis (zoology)Nervous SystemNeural CrestEpitheliumDigestive SystemRespiratory SystemDigestive SystemLiverPancreasMuscleBoneConnective TissueNotochordHeartBloodBlood VesselsCartilageRibsVertebraeDermisEpitheliaMesenchymeTriploblastyTopological StructureSimply Connected SpaceSphereTorusDifferentiation (cellular)DigestionLewis WolpertErnst HaeckelInvaginationInvolution (medicine)Ingression (biology)EmbryogenesisEpibolyMolluscSea UrchinFrogChickenEmbryological Origins Of The Mouth And AnusProtostomeDeuterostomeMouthAnusCleavage (embryo)EuechinoideaMRNAWnt Signaling PathwayNotch Signaling PathwayMesenchymeSea Urchin SkeletogenesisEndodermMesodermArchenteronEarly Stages Of Embryogenesis Of Tailless AmphibiansWikipedia:MergingTalk:GastrulationFrogSpindle ApparatusCytoskeletonCytoplasmMicrotubulesPrimitive KnotHilde MangoldHans SpemannBeta-cateninCellular DifferentiationDorsum (anatomy)AmnioteArchenteronBlastocoelBlastulaAmniotesEmbryoAsymmetryPrimitive StreakEpiblastPrimitive StreakEpithelial-mesenchymal TransitionIngression (biology)Primitive StreakGerm LayersAnteroposteriorPlacentaEpiblastBone Morphogenetic ProteinFibroblast Growth FactorNodal SignalingWnt Signaling PathwayEpiblastAnatomical Terms Of LocationAnteriorNODALEnlargePrimitive StreakEpiblastIngression (biology)Primitive StreakNODALKoller's SickleBMP4Cerberus (protein)Lefty (protein)NODALPrimitive StreakBilateral SymmetryEmbryoBeta-cateninEpitheliumEpiblastPrimitive StreakEpithelial-mesenchymal TransitionCell AdhesionFibroblast Growth FactorFGFR1SNAI1CDH1 (gene)Ingression (biology)Primitive StreakFGF8Primitive StreakCell CultureGastruloidEmbryonic Stem CellInduced Pluripotent Stem CellThe Three Rs (animals)Primitive StreakBrachyuryEpithelial–mesenchymal TransitionBone Morphogenetic Protein 4Germ LayerEmbryoid BodyOrganoidGastruloidBlastocystDeuterostomeFate MapPrimitive KnotInvaginationNeurulationProtostomeVegetal RotationLewis WolpertInternational Standard Book NumberSpecial:BookSources/9780486469294International Standard Book NumberSpecial:BookSources/0-87969-707-5Digital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierInternational Standard Serial NumberPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierInternational Standard Serial NumberPubMed CentralPubMed IdentifierBioRxivBioRxivDigital Object IdentifierInternational Standard Serial NumberPubMed IdentifierElizabeth RobertsonNat. Rev. Mol. Cell Biol.Digital Object IdentifierPubMed IdentifierClosed Access Publication – Behind PaywallInternational Standard Book NumberSpecial:BookSources/978-3-540-41077-5Category:CS1 Maint: Uses Editors ParameterInternational Standard Book NumberSpecial:BookSources/978-90-481-8574-0International Standard Book NumberSpecial:BookSources/978-0-87893-558-1Brian K. HallInternational Standard Book NumberSpecial:BookSources/978-0-412-78580-1Lionel G. HarrisonInternational Standard Book NumberSpecial:BookSources/978-0-521-55350-6International Standard Book NumberSpecial:BookSources/978-1-4051-1147-8Digital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-3-540-37653-8Category:CS1 Maint: Uses Editors ParameterMech. Dev.Digital Object IdentifierPubMed IdentifierOpen Access Publication – Free To ReadInternational Standard Book NumberSpecial:BookSources/978-0-19-512450-7International Standard Book NumberSpecial:BookSources/978-0-8160-7008-4International Standard Book NumberSpecial:BookSources/978-0-521-78337-8Category:CS1 Maint: Uses Authors ParameterInternational Standard Book NumberSpecial:BookSources/978-0-521-78337-8Category:CS1 Maint: Uses Authors ParameterInternational Standard Book NumberSpecial:BookSources/978-0-12-153131-7Category:CS1 Maint: Uses Authors ParameterInternational Standard Book NumberSpecial:BookSources/978-90-5702-419-1International Standard Book NumberSpecial:BookSources/978-1-4020-2996-7International Standard Book NumberSpecial:BookSources/978-0-8493-1181-9International Standard Book NumberSpecial:BookSources/978-3-13-142081-7International Standard Book NumberSpecial:BookSources/978-0-12-618621-5Category:CS1 Maint: Uses Authors ParameterInternational Standard Book NumberSpecial:BookSources/978-0-19-514502-1Category:CS1 Maint: Uses Authors ParameterCategory:CS1 Maint: Uses Editors ParameterTemplate:EmbryologyTemplate Talk:EmbryologyHuman EmbryogenesisHuman FertilizationOocyte ActivationZygoteCleavage (embryo)BlastomereMorulaBlastocoeleBlastocystBlastulaInner Cell MassTrophoblastBilaminar BlastocystHypoblastEpiblastTrilaminar BlastocystGerm LayerArchenteronPrimitive StreakPrimitive PitPrimitive KnotBlastoporePrimitive GrooveRegional SpecificationEmbryonic DiscEctodermSurface EctodermNeuroectodermSomatopleuric MesenchymeNeurulationNeural CrestEndodermSplanchnopleuric MesenchymeMesodermAxial MesodermParaxial MesodermSomiteSomitomereIntermediate MesodermLateral Plate MesodermIntraembryonic CoelomSplanchnopleuric MesenchymeSomatopleuric MesenchymeHelp:CategoryCategory:Animal Developmental BiologyCategory:EmbryologyCategory:GastrulationCategory:Articles Which Use Infobox Templates With No Data RowsCategory:Articles To Be Merged From March 2017Category:All Articles To Be MergedCategory:CS1 Maint: Uses Editors ParameterCategory:CS1 Maint: Uses Authors ParameterDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link