Contents 1 Introduction 2 History 3 Characteristics 4 Brownian motion 5 Common techniques for generating fractals 6 Simulated fractals 7 Natural phenomena with fractal features 8 In creative works 9 Physiological responses 10 Ion production capabilities 11 Applications in technology 12 See also 13 Notes 14 References 15 Further reading 16 External links

Introduction[edit] The word "fractal" often has different connotations for laypeople than for mathematicians, where the layperson is more likely to be familiar with fractal art than a mathematical conception. The mathematical concept is difficult to define formally even for mathematicians, but key features can be understood with little mathematical background. The feature of "self-similarity", for instance, is easily understood by analogy to zooming in with a lens or other device that zooms in on digital images to uncover finer, previously invisible, new structure. If this is done on fractals, however, no new detail appears; nothing changes and the same pattern repeats over and over, or for some fractals, nearly the same pattern reappears over and over.[1] Self-similarity itself is not necessarily counter-intuitive (e.g., people have pondered self-similarity informally such as in the infinite regress in parallel mirrors or the homunculus, the little man inside the head of the little man inside the head...). The difference for fractals is that the pattern reproduced must be detailed.[3]:166; 18[4][7] This idea of being detailed relates to another feature that can be understood without mathematical background: Having a fractional or fractal dimension greater than its topological dimension, for instance, refers to how a fractal scales compared to how geometric shapes are usually perceived. A regular line, for instance, is conventionally understood to be 1-dimensional; if such a curve is divided into pieces each 1/3 the length of the original, there are always 3 equal pieces. In contrast, consider the Koch snowflake. It is also 1-dimensional for the same reason as the ordinary line, but it has, in addition, a fractal dimension greater than 1 because of how its detail can be measured. The fractal curve divided into parts 1/3 the length of the original line becomes 4 pieces rearranged to repeat the original detail, and this unusual relationship is the basis of its fractal dimension. This also leads to understanding a third feature, that fractals as mathematical equations are "nowhere differentiable". In a concrete sense, this means fractals cannot be measured in traditional ways.[3][6][9] To elaborate, in trying to find the length of a wavy non-fractal curve, one could find straight segments of some measuring tool small enough to lay end to end over the waves, where the pieces could get small enough to be considered to conform to the curve in the normal manner of measuring with a tape measure. But in measuring a wavy fractal curve such as the Koch snowflake, one would never find a small enough straight segment to conform to the curve, because the wavy pattern would always re-appear, albeit at a smaller size, essentially pulling a little more of the tape measure into the total length measured each time one attempted to fit it tighter and tighter to the curve.[3]

History[edit] A Koch snowflake is a fractal that begins with an equilateral triangle and then replaces the middle third of every line segment with a pair of line segments that form an equilateral bump The history of fractals traces a path from chiefly theoretical studies to modern applications in computer graphics, with several notable people contributing canonical fractal forms along the way.[11][12] According to Pickover, the mathematics behind fractals began to take shape in the 17th century when the mathematician and philosopher Gottfried Leibniz pondered recursive self-similarity (although he made the mistake of thinking that only the straight line was self-similar in this sense).[36] In his writings, Leibniz used the term "fractional exponents", but lamented that "Geometry" did not yet know of them.[3]:405 Indeed, according to various historical accounts, after that point few mathematicians tackled the issues, and the work of those who did remained obscured largely because of resistance to such unfamiliar emerging concepts, which were sometimes referred to as mathematical "monsters".[9][11][12] Thus, it was not until two centuries had passed that on July 18, 1872 Karl Weierstrass presented the first definition of a function with a graph that would today be considered a fractal, having the non-intuitive property of being everywhere continuous but nowhere differentiable at the Royal Prussian Academy of Sciences.[11]:7[12] In addition, the quotient difference becomes arbitrarily large as the summation index increases.[37] Not long after that, in 1883, Georg Cantor, who attended lectures by Weierstrass,[12] published examples of subsets of the real line known as Cantor sets, which had unusual properties and are now recognized as fractals.[11]:11–24 Also in the last part of that century, Felix Klein and Henri Poincaré introduced a category of fractal that has come to be called "self-inverse" fractals.[3]:166 A Julia set, a fractal related to the Mandelbrot set A Sierpinski triangle can be generated by a fractal tree. One of the next milestones came in 1904, when Helge von Koch, extending ideas of Poincaré and dissatisfied with Weierstrass's abstract and analytic definition, gave a more geometric definition including hand drawn images of a similar function, which is now called the Koch snowflake.[11]:25[12] Another milestone came a decade later in 1915, when Wacław Sierpiński constructed his famous triangle then, one year later, his carpet. By 1918, two French mathematicians, Pierre Fatou and Gaston Julia, though working independently, arrived essentially simultaneously at results describing what are now seen as fractal behaviour associated with mapping complex numbers and iterative functions and leading to further ideas about attractors and repellors (i.e., points that attract or repel other points), which have become very important in the study of fractals.[6][11][12] Very shortly after that work was submitted, by March 1918, Felix Hausdorff expanded the definition of "dimension", significantly for the evolution of the definition of fractals, to allow for sets to have noninteger dimensions.[12] The idea of self-similar curves was taken further by Paul Lévy, who, in his 1938 paper Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole described a new fractal curve, the Lévy C curve.[notes 1] A strange attractor that exhibits multifractal scaling Uniform mass center triangle fractal 2x 120 degrees recursive IFS Different researchers have postulated that without the aid of modern computer graphics, early investigators were limited to what they could depict in manual drawings, so lacked the means to visualize the beauty and appreciate some of the implications of many of the patterns they had discovered (the Julia set, for instance, could only be visualized through a few iterations as very simple drawings).[3]:179[9][12] That changed, however, in the 1960s, when Benoit Mandelbrot started writing about self-similarity in papers such as How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension,[38][39] which built on earlier work by Lewis Fry Richardson. In 1975[7] Mandelbrot solidified hundreds of years of thought and mathematical development in coining the word "fractal" and illustrated his mathematical definition with striking computer-constructed visualizations. These images, such as of his canonical Mandelbrot set, captured the popular imagination; many of them were based on recursion, leading to the popular meaning of the term "fractal".[40] Currently, fractal studies are essentially exclusively computer-based.[9][11][36] In 1980, Loren Carpenter gave a presentation at the SIGGRAPH where he introduced his software for generating and rendering fractally generated landscapes.[41]

Characteristics[edit] One often cited description that Mandelbrot published to describe geometric fractals is "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole";[3] this is generally helpful but limited. Authors disagree on the exact definition of fractal, but most usually elaborate on the basic ideas of self-similarity and an unusual relationship with the space a fractal is embedded in.[2][3][4][6][42] One point agreed on is that fractal patterns are characterized by fractal dimensions, but whereas these numbers quantify complexity (i.e., changing detail with changing scale), they neither uniquely describe nor specify details of how to construct particular fractal patterns.[43] In 1975 when Mandelbrot coined the word "fractal", he did so to denote an object whose Hausdorff–Besicovitch dimension is greater than its topological dimension.[7] It has been noted that this dimensional requirement is not met by fractal space-filling curves such as the Hilbert curve.[notes 2] According to Falconer, rather than being strictly defined, fractals should, in addition to being nowhere differentiable and able to have a fractal dimension, be generally characterized by a gestalt of the following features;[4] Self-similarity, which may be manifested as: Exact self-similarity: identical at all scales; e.g. Koch snowflake Quasi self-similarity: approximates the same pattern at different scales; may contain small copies of the entire fractal in distorted and degenerate forms; e.g., the Mandelbrot set's satellites are approximations of the entire set, but not exact copies. Statistical self-similarity: repeats a pattern stochastically so numerical or statistical measures are preserved across scales; e.g., randomly generated fractals; the well-known example of the coastline of Britain, for which one would not expect to find a segment scaled and repeated as neatly as the repeated unit that defines, for example, the Koch snowflake[6] Qualitative self-similarity: as in a time series[17] Multifractal scaling: characterized by more than one fractal dimension or scaling rule Fine or detailed structure at arbitrarily small scales. A consequence of this structure is fractals may have emergent properties[44] (related to the next criterion in this list). Irregularity locally and globally that is not easily described in traditional Euclidean geometric language. For images of fractal patterns, this has been expressed by phrases such as "smoothly piling up surfaces" and "swirls upon swirls".[8] Simple and "perhaps recursive" definitions see Common techniques for generating fractals As a group, these criteria form guidelines for excluding certain cases, such as those that may be self-similar without having other typically fractal features. A straight line, for instance, is self-similar but not fractal because it lacks detail, is easily described in Euclidean language, has the same Hausdorff dimension as topological dimension, and is fully defined without a need for recursion.[3][6]

Brownian motion[edit] A path generated by a one dimensional Wiener process is a fractal curve of dimension 1.5, and Brownian motion is a finite version of this.[45]

Common techniques for generating fractals[edit] Self-similar branching pattern modeled in silico using L-systems principles[26] Images of fractals can be created by fractal generating programs. Because of the butterfly effect a small change in a single variable can have a unpredictable outcome. Iterated function systems – use fixed geometric replacement rules; may be stochastic or deterministic;[46] e.g., Koch snowflake, Cantor set, Haferman carpet,[47] Sierpinski carpet, Sierpinski gasket, Peano curve, Harter-Heighway dragon curve, T-Square, Menger sponge Strange attractors – use iterations of a map or solutions of a system of initial-value differential or difference equations that exhibit chaos (e.g., see multifractal image, or the logistic map) L-systems – use string rewriting; may resemble branching patterns, such as in plants, biological cells (e.g., neurons and immune system cells[26]), blood vessels, pulmonary structure,[48] etc. or turtle graphics patterns such as space-filling curves and tilings Escape-time fractals – use a formula or recurrence relation at each point in a space (such as the complex plane); usually quasi-self-similar; also known as "orbit" fractals; e.g., the Mandelbrot set, Julia set, Burning Ship fractal, Nova fractal and Lyapunov fractal. The 2d vector fields that are generated by one or two iterations of escape-time formulae also give rise to a fractal form when points (or pixel data) are passed through this field repeatedly. Random fractals – use stochastic rules; e.g., Lévy flight, percolation clusters, self avoiding walks, fractal landscapes, trajectories of Brownian motion and the Brownian tree (i.e., dendritic fractals generated by modeling diffusion-limited aggregation or reaction-limited aggregation clusters).[6] A fractal generated by a finite subdivision rule for an alternating link Finite subdivision rules use a recursive topological algorithm for refining tilings[49] and they are similar to the process of cell division.[50] The iterative processes used in creating the Cantor set and the Sierpinski carpet are examples of finite subdivision rules, as is barycentric subdivision.

Simulated fractals[edit] A fractal flame Fractal patterns have been modeled extensively, albeit within a range of scales rather than infinitely, owing to the practical limits of physical time and space. Models may simulate theoretical fractals or natural phenomena with fractal features. The outputs of the modelling process may be highly artistic renderings, outputs for investigation, or benchmarks for fractal analysis. Some specific applications of fractals to technology are listed elsewhere. Images and other outputs of modelling are normally referred to as being "fractals" even if they do not have strictly fractal characteristics, such as when it is possible to zoom into a region of the fractal image that does not exhibit any fractal properties. Also, these may include calculation or display artifacts which are not characteristics of true fractals. Modeled fractals may be sounds,[21] digital images, electrochemical patterns, circadian rhythms,[51] etc. Fractal patterns have been reconstructed in physical 3-dimensional space[29]:10 and virtually, often called "in silico" modeling.[48] Models of fractals are generally created using fractal-generating software that implements techniques such as those outlined above.[6][17][29] As one illustration, trees, ferns, cells of the nervous system,[26] blood and lung vasculature,[48] and other branching patterns in nature can be modeled on a computer by using recursive algorithms and L-systems techniques.[26] The recursive nature of some patterns is obvious in certain examples—a branch from a tree or a frond from a fern is a miniature replica of the whole: not identical, but similar in nature. Similarly, random fractals have been used to describe/create many highly irregular real-world objects. A limitation of modeling fractals is that resemblance of a fractal model to a natural phenomenon does not prove that the phenomenon being modeled is formed by a process similar to the modeling algorithms.

Natural phenomena with fractal features[edit] Further information: Patterns in nature Approximate fractals found in nature display self-similarity over extended, but finite, scale ranges. The connection between fractals and leaves, for instance, is currently being used to determine how much carbon is contained in trees.[52] Phenomena known to have fractal features include: River networks Fault lines Mountain ranges Craters Lightning bolts Coastlines Mountain goat horns Trees Algae Geometrical optics[53] Animal coloration patterns Romanesco broccoli Pineapple Heart rates[22] Heart sounds[23] Earthquakes[30][54] Snowflakes[55] Psychological subjective perception[56] Crystals[57] Blood vessels and pulmonary vessels[48] Ocean waves[58] DNA Soil pores[59] Rings of Saturn[60][61] Proteins[62] Surfaces in turbulent flows[63][64] Frost crystals occurring naturally on cold glass form fractal patterns  Fractal basin boundary in a geometrical optical system[53]  A fractal is formed when pulling apart two glue-covered acrylic sheets  High voltage breakdown within a 4 in (100 mm) block of acrylic creates a fractal Lichtenberg figure  Romanesco broccoli, showing self-similar form approximating a natural fractal  Fractal defrosting patterns, polar Mars. The patterns are formed by sublimation of frozen CO2. Width of image is about a kilometer.  Slime mold Brefeldia maxima growing fractally on wood 

In creative works[edit] Further information: Fractal art and Mathematics and art Since 1999, more than 10 scientific groups have performed fractal analysis on over 50 of Jackson Pollock's (1912–1956) paintings which were created by pouring paint directly onto his horizontal canvases[65][66][67][68][69][70][71][72][73][74][75][76][77] Recently, fractal analysis has been used to achieve a 93% success rate in distinguishing real from imitation Pollocks.[78] Cognitive neuroscientists have shown that Pollock's fractals induce the same stress-reduction in observers as computer-generated fractals and Nature's fractals.[79] Decalcomania, a technique used by artists such as Max Ernst, can produce fractal-like patterns.[80] It involves pressing paint between two surfaces and pulling them apart. Cyberneticist Ron Eglash has suggested that fractal geometry and mathematics are prevalent in African art, games, divination, trade, and architecture. Circular houses appear in circles of circles, rectangular houses in rectangles of rectangles, and so on. Such scaling patterns can also be found in African textiles, sculpture, and even cornrow hairstyles.[32][81] Hokky Situngkir also suggested the similar properties in Indonesian traditional art, batik, and ornaments found in traditional houses.[82][83] In a 1996 interview with Michael Silverblatt, David Foster Wallace admitted that the structure of the first draft of Infinite Jest he gave to his editor Michael Pietsch was inspired by fractals, specifically the Sierpinski triangle (a.k.a. Sierpinski gasket), but that the edited novel is "more like a lopsided Sierpinsky Gasket".[31] A fractal that models the surface of a mountain (animation)  3D recursive image  Recursive fractal butterfly image 

Physiological responses[edit] Humans appear to be especially well-adapted to processing fractal patterns with D values between 1.3–1.5.[84] When humans view fractal patterns with D values between 1.3–1.5, this tends to reduce physiological stress.[85][86]

Ion production capabilities[edit] If a circle boundary is drawn around the two-dimensional view of a fractal, the fractal will never cross the boundary, this is due to the scaling of each successive iteration of the fractal being smaller. When fractals are iterated many times, the perimeter of the fractal increases, while the area will never exceed a certain value. A fractal in three-dimensional space is similar, however, a difference between fractals in two dimensions and three dimensions, is that a three dimensional fractal will increase in surface area, but never exceed a certain volume.[87] This can be utilized to maximize the efficiency of ion propulsion, when choosing electron emitter construction and material. If done correctly, the efficiency of the emission process can be maximized.[88]

Applications in technology[edit] Main article: Fractal analysis Fractal antennas[89] Fractal transistor[90] Fractal heat exchangers[91] Digital imaging Architecture[33] Urban growth[92][93] Classification of histopathology slides Fractal landscape or Coastline complexity Detecting 'life as we don't know it' by fractal analysis[94] Enzymes (Michaelis-Menten kinetics) Generation of new music Signal and image compression Creation of digital photographic enlargements Fractal in soil mechanics Computer and video game design Computer Graphics Organic environments Procedural generation Fractography and fracture mechanics Small angle scattering theory of fractally rough systems T-shirts and other fashion Generation of patterns for camouflage, such as MARPAT Digital sundial Technical analysis of price series Fractals in networks Medicine[29] Neuroscience[24][25] Diagnostic Imaging[28] Pathology[95][96] Geology[97] Geography[98] Archaeology[99][100] Soil mechanics[27] Seismology[30] Search and rescue[101] Technical analysis[102] Morton order space filling curves for GPU cache coherency in texture mapping,[103][104][105] rasterisation[106][107] and indexing of turbulence data.[108][109]

See also[edit] Mathematics portal Banach fixed point theorem Bifurcation theory Box counting Cymatics Diamond-square algorithm Droste effect Feigenbaum function Form constant Fractal cosmology Fractal derivative Fractalgrid Fractal string Fracton Graftal Greeble Lacunarity List of fractals by Hausdorff dimension Mandelbulb Mandelbox Macrocosm and microcosm Multifractal system Multiplicative calculus Newton fractal Percolation Power law Publications in fractal geometry Random walk Self-reference Strange loop Turbulence Wiener process

Notes[edit] ^ The original paper, Lévy, Paul (1938). "Les Courbes planes ou gauches et les surfaces composées de parties semblables au tout". Journal de l'École Polytechnique: 227–247, 249–291. , is translated in Edgar, pages 181–239. ^ The Hilbert curve map is not a homeomorphism, so it does not preserve topological dimension. The topological dimension and Hausdorff dimension of the image of the Hilbert map in R2 are both 2. Note, however, that the topological dimension of the graph of the Hilbert map (a set in R3) is 1.

References[edit] ^ a b Boeing, G. (2016). "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction". Systems. 4 (4): 37. doi:10.3390/systems4040037. Retrieved 2016-12-02.  ^ a b c Gouyet, Jean-François (1996). Physics and fractal structures. Paris/New York: Masson Springer. ISBN 978-0-387-94153-0.  ^ a b c d e f g h i j k l m n o p Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5.  ^ a b c d e f Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. xxv. ISBN 0-470-84862-6.  ^ a b Briggs, John (1992). Fractals:The Patterns of Chaos. London: Thames and Hudson. p. 148. ISBN 0-500-27693-5.  ^ a b c d e f g h i j Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31; 139–146. ISBN 978-981-02-0668-0.  ^ a b c d e Albers, Donald J.; Alexanderson, Gerald L. (2008). "Benoît Mandelbrot: In his own words". Mathematical people : profiles and interviews. Wellesley, MA: AK Peters. p. 214. ISBN 978-1-56881-340-0.  ^ a b c Mandelbrot, Benoît B. (2004). Fractals and Chaos. Berlin: Springer. p. 38. ISBN 978-0-387-20158-0. A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension  ^ a b c d e Gordon, Nigel (2000). Introducing fractal geometry. Duxford: Icon. p. 71. ISBN 978-1-84046-123-7.  ^ Segal, S. L. (June 1978). "Riemann's example of a continuous 'nondifferentiable' function continued". The Mathematical Intelligencer. 1 (2): 81–82. doi:10.1007/BF03023065.  ^ a b c d e f g h Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8.  ^ a b c d e f g h i Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on 4 February 2012.  ^ Mandelbrot, Benoit. "24/7 Lecture on Fractals". 2006 Ig Nobel Awards. Improbable Research.  ^ Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1982); p. 15 ^ Jens Feder (2013). Fractals. Springer Science & Business Media. p. 11. ISBN 978-1-4899-2124-6.  ^ Gerald Edgar (2007). Measure, Topology, and Fractal Geometry. Springer Science & Business Media. p. 7. ISBN 978-0-387-74749-1.  ^ a b c Peters, Edgar (1996). Chaos and order in the capital markets : a new view of cycles, prices, and market volatility. New York: Wiley. ISBN 0-471-13938-6.  ^ Krapivsky, P. L.; Ben-Naim, E. (1994). "Multiscaling in Stochastic Fractals". Physics Letters A. 196 (3–4): 168. Bibcode:1994PhLA..196..168K. doi:10.1016/0375-9601(94)91220-3.  ^ Hassan, M. K.; Rodgers, G. J. (1995). "Models of fragmentation and stochastic fractals". Physics Letters A. 208 (1–2): 95. Bibcode:1995PhLA..208...95H. doi:10.1016/0375-9601(95)00727-k.  ^ Hassan, M. K.; Pavel, N. I.; Pandit, R. K.; Kurths, J. (2014). "Dyadic Cantor set and its kinetic and stochastic counterpart". Chaos, Solitons & Fractals. 60: 31–39. Bibcode:2014CSF....60...31H. doi:10.1016/j.chaos.2013.12.010.  ^ a b Brothers, Harlan J. (2007). "Bach's Cello Suite No. 3". Fractals. 15 (1): 89–95. doi:10.1142/S0218348X0700337X.  ^ a b Tan, Can Ozan; Cohen, Michael A.; Eckberg, Dwain L.; Taylor, J. Andrew (2009). "Fractal properties of human heart period variability: Physiological and methodological implications". The Journal of Physiology. 587 (15): 3929. doi:10.1113/jphysiol.2009.169219. PMC 2746620 . PMID 19528254.  ^ a b Buldyrev, Sergey V.; Goldberger, Ary L.; Havlin, Shlomo; Peng, Chung-Kang; Stanley, H. Eugene (1995). "Fractals in Biology and Medicine: From DNA to the Heartbeat". In Bunde, Armin; Havlin, Shlomo. Fractals in Science. Springer.  ^ a b Liu, Jing Z.; Zhang, Lu D.; Yue, Guang H. (2003). "Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging". Biophysical Journal. 85 (6): 4041–4046. Bibcode:2003BpJ....85.4041L. doi:10.1016/S0006-3495(03)74817-6. PMC 1303704 . PMID 14645092.  ^ a b Karperien, Audrey L.; Jelinek, Herbert F.; Buchan, Alastair M. (2008). "Box-Counting Analysis of Microglia Form in Schizophrenia, Alzheimer's Disease and Affective Disorder". Fractals. 16 (2): 103. doi:10.1142/S0218348X08003880.  ^ a b c d e Jelinek, Herbert F.; Karperien, Audrey; Cornforth, David; Cesar, Roberto; Leandro, Jorge de Jesus Gomes (2002). "MicroMod-an L-systems approach to neural modelling". In Sarker, Ruhul. Workshop proceedings: the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, University House, ANU,. University of New South Wales. ISBN 9780731705054. OCLC 224846454. Retrieved 3 February 2012. Event location: Canberra, Australia  ^ a b Hu, Shougeng; Cheng, Qiuming; Wang, Le; Xie, Shuyun (2012). "Multifractal characterization of urban residential land price in space and time". Applied Geography. 34: 161. doi:10.1016/j.apgeog.2011.10.016.  ^ a b Karperien, Audrey; Jelinek, Herbert F.; Leandro, Jorge de Jesus Gomes; Soares, João V. B.; Cesar Jr, Roberto M.; Luckie, Alan (2008). "Automated detection of proliferative retinopathy in clinical practice". Clinical ophthalmology (Auckland, N.Z.). 2 (1): 109–122. doi:10.2147/OPTH.S1579. PMC 2698675 . PMID 19668394.  ^ a b c d Losa, Gabriele A.; Nonnenmacher, Theo F. (2005). Fractals in biology and medicine. Springer. ISBN 978-3-7643-7172-2.  ^ a b c Vannucchi, Paola; Leoni, Lorenzo (2007). "Structural characterization of the Costa Rica décollement: Evidence for seismically-induced fluid pulsing". Earth and Planetary Science Letters. 262 (3–4): 413. Bibcode:2007E&PSL.262..413V. doi:10.1016/j.epsl.2007.07.056.  ^ a b Wallace, David Foster. "Bookworm on KCRW". Retrieved 2010-10-17.  ^ a b Eglash, Ron (1999). "African Fractals: Modern Computing and Indigenous Design". New Brunswick: Rutgers University Press. Retrieved 2010-10-17.  ^ a b Ostwald, Michael J., and Vaughan, Josephine (2016) The Fractal Dimension of Architecture. Birhauser, Basel.[1] doi:10.1007/978-3-319-32426-5 ^ Stumpff, Andrew (2013). "The Law is a Fractal: The Attempt to Anticipate Everything". 44. Loyola University Chicago Law Journal: 649. SSRN 2157804 .  ^ Baranger, Michael. "Chaos, Complexity, and Entropy: A physics talk for non-physicists" (PDF).  ^ a b Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling. p. 310. ISBN 978-1-4027-5796-9.  ^ "Fractal Geometry". Retrieved 2017-04-11.  ^ Mandelbrot, B. (1967). "How Long Is the Coast of Britain?". Science. 156 (3775): 636–638. Bibcode:1967Sci...156..636M. doi:10.1126/science.156.3775.636. PMID 17837158.  ^ Batty, Michael (1985-04-04). "Fractals – Geometry Between Dimensions". New Scientist. Holborn. 105 (1450): 31.  ^ Russ, John C. (1994). Fractal surfaces. 1. Springer. p. 1. ISBN 978-0-306-44702-0. Retrieved 2011-02-05.  ^ 2009. Vol Libre, an amazing CG film from 1980. [online] Available at: ^ Edgar, Gerald (2008). Measure, topology, and fractal geometry. New York: Springer-Verlag. p. 1. ISBN 978-0-387-74748-4.  ^ Karperien, Audrey (2004). Defining microglial morphology: Form, Function, and Fractal Dimension. Charles Sturt University. doi:10.13140/2.1.2815.9048.  ^ Spencer, John; Thomas, Michael S. C.; McClelland, James L. (2009). Toward a unified theory of development : connectionism and dynamic systems theory re-considered. Oxford/New York: Oxford University Press. ISBN 978-0-19-530059-8.  ^ Falconer, Kenneth (2013). Fractals, A Very Short Introduction. Oxford University Press.  ^ Frame, Angus (3 August 1998). "Iterated Function Systems". In Pickover, Clifford A. Chaos and fractals: a computer graphical journey : ten year compilation of advanced research. Elsevier. pp. 349–351. ISBN 978-0-444-50002-1. Retrieved 4 February 2012.  ^ "Haferman Carpet". WolframAlpha. Retrieved 18 October 2012.  ^ a b c d Hahn, Horst K.; Georg, Manfred; Peitgen, Heinz-Otto (2005). "Fractal aspects of three-dimensional vascular constructive optimization". In Losa, Gabriele A.; Nonnenmacher, Theo F. Fractals in biology and medicine. Springer. pp. 55–66. ISBN 978-3-7643-7172-2.  ^ J. W. Cannon, W. J. Floyd, W. R. Parry. Finite subdivision rules. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153–196. ^ J. W. Cannon, W. Floyd and W. Parry. Crystal growth, biological cell growth and geometry. Pattern Formation in Biology, Vision and Dynamics, pp. 65–82. World Scientific, 2000. ISBN 981-02-3792-8, ISBN 978-981-02-3792-9. ^ Fathallah-Shaykh, Hassan M. (2011). "Fractal Dimension of the Drosophila Circadian Clock". Fractals. 19 (4): 423–430. doi:10.1142/S0218348X11005476.  ^ "Hunting the Hidden Dimension." Nova. PBS. WPMB-Maryland. 28 October 2008. ^ a b Sweet, D.; Ott, E.; Yorke, J. A. (1999), "Complex topology in Chaotic scattering: A Laboratory Observation", Nature, 399 (6734): 315, Bibcode:1999Natur.399..315S, doi:10.1038/20573  ^ Sornette, Didier (2004). Critical phenomena in natural sciences: chaos, fractals, selforganization, and disorder: concepts and tools. Springer. pp. 128–140. ISBN 978-3-540-40754-6.  ^ Meyer, Yves; Roques, Sylvie (1993). Progress in wavelet analysis and applications: proceedings of the International Conference "Wavelets and Applications," Toulouse, France – June 1992. Atlantica Séguier Frontières. p. 25. ISBN 978-2-86332-130-0. Retrieved 2011-02-05.  ^ Pincus, David (September 2009). "The Chaotic Life: Fractal Brains Fractal Thoughts".  ^ Carbone, Alessandra; Gromov, Mikhael; Prusinkiewicz, Przemyslaw (2000). Pattern formation in biology, vision and dynamics. World Scientific. p. 78. ISBN 978-981-02-3792-9.  ^ Addison, Paul S. (1997). Fractals and chaos: an illustrated course. CRC Press. pp. 44–46. ISBN 978-0-7503-0400-9. Retrieved 2011-02-05.  ^ Ozhovan M.I., Dmitriev I.E., Batyukhnova O.G. Fractal structure of pores of clay soil. Atomic Energy, 74, 241–243 (1993) ^ Takayasu, H. (1990). Fractals in the physical sciences. Manchester: Manchester University Press. p. 36. ISBN 9780719034343.  ^ Jun, Li; Ostoja-Starzewski, Martin (1 April 2015). "Edges of Saturn's Rings are Fractal". SpringerPlus. 4,158. doi:10.1186/s40064-015-0926-6.  ^ Enright, Matthew B.; Leitner, David M. (27 January 2005). "Mass fractal dimension and the compactness of proteins". Physical Review E. 71 (1): 011912. Bibcode:2005PhRvE..71a1912E. doi:10.1103/PhysRevE.71.011912.  ^ Sreenivasan, K.R.; Meneveau, C. (1986). "The Fractal Facets of Turbulence". Journal of Fluid Mechanics. 173: 357–386. Bibcode:1986JFM...173..357S. doi:10.1017/S0022112086001209.  ^ de Silva, C.M.; Philip, J.; Chauhan, K.; Meneveau, C.; Marusic, I. (2013). "Multiscale Geometry and Scaling of the Turbulent-Nonturbulent Interface in High Reynolds Number Boundary Layers". Phys. Rev. Lett. 111 (6039): 044501. Bibcode:2011Sci...333..192A. doi:10.1126/science.1203223.  ^ Taylor, R. P.; et al. (1999). "Fractal Analysis of Pollock's Drip Paintings". Nature. 399 (6735): 422. Bibcode:1999Natur.399..422T. doi:10.1038/20833.  ^ Mureika, J. R.; Dyer, C. C.; Cupchik, G. C. (2005). "Multifractal Structure in Nonrepresentational Art". Physical Review E. 72 (4): 046101–1–15. arXiv:physics/0506063 . Bibcode:2005PhRvE..72d6101M. doi:10.1103/PhysRevE.72.046101.  ^ Redies, C.; Hasenstein, J.; Denzler, J. (2007). "Fractal-Like Image Statistics in Visual Art: Similarity to Natural Scenes". Spatial Vision. 21 (1): 137–148. doi:10.1163/156856807782753921.  ^ Lee, S.; Olsen, S.; Gooch, B. (2007). "Simulating and Analyzing Jackson Pollock's Paintings". Journal of Mathematics and the Arts. 1 (2): 73–83. doi:10.1080/17513470701451253.  ^ Alvarez-Ramirez, J.; Ibarra-Valdez, C.; Rodriguez, E.; Dagdug, L. (2008). "1/f-Noise Structure in Pollock's Drip Paintings". Physica A. 387: 281–295. Bibcode:2008PhyA..387..281A. doi:10.1016/j.physa.2007.08.047.  ^ Graham, D. J.; Field, D. J. (2008). "Variations in Intensity for Representative and Abstract Art, and for Art from Eastern and Western Hemispheres" (PDF). Perception. 37 (9): 1341–1352. doi:10.1068/p5971.  ^ Alvarez-Ramirez, J.; Echeverria, J. C.; Rodriguez, E. (2008). "Performance of a high-dimensional R/S method for Hurst exponent estimation". Physica A. 387 (26): 6452–6462. Bibcode:2008PhyA..387.6452A. doi:10.1016/j.physa.2008.08.014.  ^ Coddington, J.; Elton, J.; Rockmore, D.; Wang, Y. (2008). "Multifractal Analysis and Authentication of Jackson Pollock Paintings". Proceedings of SPIE. 6810 (68100F): 1–12. Bibcode:2008SPIE.6810E..0FC. doi:10.1117/12.765015.  ^ Al-Ayyoub, M.; Irfan, M. T.; Stork, D. G. (2009). "Boosting Multi-Feature Visual Texture Classifiers for the Authentification of Jackson Pollock's Drip Paintings". SPIE proceedings on Computer Vision and Image Analysis of Art II. Computer Vision and Image Analysis of Art II. 7869 (78690H): 78690H. Bibcode:2011SPIE.7869E..0HA. doi:10.1117/12.873142.  ^ Mureika, J. R.; Taylor, R. P. (2013). "The Abstract Expressionists and Les Automatistes: multi-fractal depth?". Signal Processing. 93 (3): 573. doi:10.1016/j.sigpro.2012.05.002.  ^ Taylor, R. P.; et al. (2005). "Authenticating Pollock Paintings Using Fractal Geometry". Pattern Recognition Letters. 28 (6): 695–702. doi:10.1016/j.patrec.2006.08.012.  ^ Jones-Smith, K.; et al. (2006). "Fractal Analysis: Revisiting Pollock's Paintings". Nature, Brief Communication Arising. 444 (7119): E9–10. Bibcode:2006Natur.444E...9J. doi:10.1038/nature05398.  ^ Taylor, R. P.; et al. (2006). "Fractal Analysis: Revisiting Pollock's Paintings (Reply)". Nature, Brief Communication Arising. 444: E10–11.  ^ Shamar, L. (2015). "What Makes a Pollock Pollock: A Machine Vision Approach" (PDF). International Journal of Arts and Technology. 8: 1–10. doi:10.1504/IJART.2015.067389.  ^ Taylor, R. P.; Spehar, B.; Van Donkelaar, P.; Hagerhall, C. M. (2011). "Perceptual and Physiological Responses to Jackson Pollock's Fractals". Frontiers in Human Neuroscience. 5: 1–13.  ^ Frame, Michael; and Mandelbrot, Benoît B.; A Panorama of Fractals and Their Uses ^ Nelson, Bryn; Sophisticated Mathematics Behind African Village Designs Fractal patterns use repetition on large, small scale, San Francisco Chronicle, Wednesday, February 23, 2009 ^ Situngkir, Hokky; Dahlan, Rolan (2009). Fisika batik: implementasi kreatif melalui sifat fraktal pada batik secara komputasional. Jakarta: Gramedia Pustaka Utama. ISBN 978-979-22-4484-7 ^ Rulistia, Novia D. (2015-10-06). "Application maps out nation's batik story". The Jakarta Post. Retrieved 2016-09-25.  ^ Taylor, Richard P. (2016). "Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli". In Di Ieva, Antonio. The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer. pp. 485–496. ISBN 978-1-4939-3995-4.  ^ Taylor, Richard P. (2006). "Reduction of Physiological Stress Using Fractal Art and Architecture". Leonardo. MIT Press – Journals. 39 (3): 245–251. doi:10.1162/leon.2006.39.3.245.  ^ For further discussion of this effect, see Taylor, Richard P.; Spehar, Branka; Donkelaar, Paul Van; Hagerhall, Caroline M. (2011). "Perceptual and Physiological Responses to Jackson Pollock's Fractals". Frontiers in Human Neuroscience. Frontiers Media SA. 5. doi:10.3389/fnhum.2011.00060.  ^ "Introduction to Fractal Geometry". Retrieved 2017-04-11.  ^ DeFelice, David (2015-08-18). "NASA – Ion Propulsion". NASA. Retrieved 2017-04-11.  ^ Hohlfeld, Robert G.; Cohen, Nathan (1999). "Self-similarity and the geometric requirements for frequency independence in Antennae". Fractals. 7 (1): 79–84. doi:10.1142/S0218348X99000098.  ^ Reiner, Richard; Waltereit, Patrick; Benkhelifa, Fouad; Müller, Stefan; Walcher, Herbert; Wagner, Sandrine; Quay, Rüdiger; Schlechtweg, Michael; Ambacher, Oliver; Ambacher, O. (2012). "Fractal structures for low-resistance large area AlGaN/GaN power transistors". Proceedings of ISPSD: 341. doi:10.1109/ISPSD.2012.6229091. ISBN 978-1-4577-1596-9.  ^ Zhiwei Huang; Yunho Hwang; Vikrant Aute; Reinhard Radermacher (2016). "Review of Fractal Heat Exchangers" (PDF) International Refrigeration and Air Conditioning Conference. Paper 1725  ^ Chen, Yanguang (2011). "Modeling Fractal Structure of City-Size Distributions Using Correlation Functions". PLoS ONE. 6 (9): e24791. arXiv:1104.4682 . Bibcode:2011PLoSO...624791C. doi:10.1371/journal.pone.0024791. PMC 3176775 . PMID 21949753.  ^ "Applications". Archived from the original on 2007-10-12. Retrieved 2007-10-21.  ^ "Detecting 'life as we don't know it' by fractal analysis" ^ Smith, Robert F.; Mohr, David N.; Torres, Vicente E.; Offord, Kenneth P.; Melton III, L. Joseph (1989). "Renal insufficiency in community patients with mild asymptomatic microhematuria". Mayo Clinic Proceedings. 64 (4): 409–414. doi:10.1016/s0025-6196(12)65730-9. PMID 2716356.  ^ Landini, Gabriel (2011). "Fractals in microscopy". Journal of Microscopy. 241 (1): 1–8. doi:10.1111/j.1365-2818.2010.03454.x. PMID 21118245.  ^ Cheng, Qiuming (1997). "Multifractal Modeling and Lacunarity Analysis". Mathematical Geology. 29 (7): 919–932. doi:10.1023/A:1022355723781.  ^ Chen, Yanguang (2011). "Modeling Fractal Structure of City-Size Distributions Using Correlation Functions". PLoS ONE. 6 (9): e24791. arXiv:1104.4682 . Bibcode:2011PLoSO...624791C. doi:10.1371/journal.pone.0024791. PMC 3176775 . PMID 21949753.  ^ Burkle-Elizondo, Gerardo; Valdéz-Cepeda, Ricardo David (2006). "Fractal analysis of Mesoamerican pyramids". Nonlinear dynamics, psychology, and life sciences. 10 (1): 105–122. PMID 16393505.  ^ Brown, Clifford T.; Witschey, Walter R. T.; Liebovitch, Larry S. (2005). "The Broken Past: Fractals in Archaeology". Journal of Archaeological Method and Theory. 12: 37. doi:10.1007/s10816-005-2396-6.  ^ Saeedi, Panteha; Sorensen, Soren A. "An Algorithmic Approach to Generate After-disaster Test Fields for Search and Rescue Agents" (PDF). Proceedings of the World Congress on Engineering 2009: 93–98. ISBN 978-988-17-0125-1.  ^ Bunde, A.; Havlin, S. (2009). "Fractal Geometry, A Brief Introduction to". Encyclopedia of Complexity and Systems Science. p. 3700. doi:10.1007/978-0-387-30440-3_218. ISBN 978-0-387-75888-6.  ^ "gpu internals" (PDF).  ^ "sony patents".  ^ "description of swizzled and hybrid tiled swizzled textures".  ^ "nvidia patent".  ^ "nvidia patent".  ^ "Johns Hopkins Turbulence Databases".  ^ Li, Y.; Perlman, E.; Wang, M.; Yang, y.; Meneveau, C.; Burns, R.; Chen, S.; Szalay, A.; Eyink, G. (2008). "A pPublic Turbulence Database Cluster and Applications to Study Lagrangian Evolution of Velocity Increments in Turbulence". Journal of Turbulence. 9: N31. arXiv:0804.1703 . Bibcode:2008JTurb...9...31L. doi:10.1080/14685240802376389. 

Further reading[edit] Barnsley, Michael F.; and Rising, Hawley; Fractals Everywhere. Boston: Academic Press Professional, 1993. ISBN 0-12-079061-0 Duarte, German A.; Fractal Narrative. About the Relationship Between Geometries and Technology and Its Impact on Narrative Spaces. Bielefeld: Transcript, 2014. ISBN 978-3-8376-2829-6 Falconer, Kenneth; Techniques in Fractal Geometry. John Wiley and Sons, 1997. ISBN 0-471-92287-0 Jürgens, Hartmut; Peitgen, Heinz-Otto; and Saupe, Dietmar; Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992. ISBN 0-387-97903-4 Mandelbrot, Benoit B.; The Fractal Geometry of Nature. New York: W. H. Freeman and Co., 1982. ISBN 0-7167-1186-9 Peitgen, Heinz-Otto; and Saupe, Dietmar; eds.; The Science of Fractal Images. New York: Springer-Verlag, 1988. ISBN 0-387-96608-0 Pickover, Clifford A.; ed.; Chaos and Fractals: A Computer Graphical Journey – A 10 Year Compilation of Advanced Research. Elsevier, 1998. ISBN 0-444-50002-2 Jones, Jesse; Fractals for the Macintosh, Waite Group Press, Corte Madera, CA, 1993. ISBN 1-878739-46-8. Lauwerier, Hans; Fractals: Endlessly Repeated Geometrical Figures, Translated by Sophia Gill-Hoffstadt, Princeton University Press, Princeton NJ, 1991. ISBN 0-691-08551-X, cloth. ISBN 0-691-02445-6 paperback. "This book has been written for a wide audience..." Includes sample BASIC programs in an appendix. Sprott, Julien Clinton (2003). Chaos and Time-Series Analysis. Oxford University Press. ISBN 978-0-19-850839-7.  Wahl, Bernt; Van Roy, Peter; Larsen, Michael; and Kampman, Eric; Exploring Fractals on the Macintosh, Addison Wesley, 1995. ISBN 0-201-62630-6 Lesmoir-Gordon, Nigel; "The Colours of Infinity: The Beauty, The Power and the Sense of Fractals." ISBN 1-904555-05-5 (The book comes with a related DVD of the Arthur C. Clarke documentary introduction to the fractal concept and the Mandelbrot set). Liu, Huajie; Fractal Art, Changsha: Hunan Science and Technology Press, 1997, ISBN 9787535722348. Gouyet, Jean-François; Physics and Fractal Structures (Foreword by B. Mandelbrot); Masson, 1996. ISBN 2-225-85130-1, and New York: Springer-Verlag, 1996. ISBN 978-0-387-94153-0. Out-of-print. Available in PDF version at."Physics and Fractal Structures" (in French). Retrieved 2010-10-17.  Bunde, Armin; Havlin, Shlomo (1996). Fractals and Disordered Systems. Springer.  Bunde, Armin; Havlin, Shlomo (1995). Fractals in Science. Springer.  ben-Avraham, Daniel; Havlin, Shlomo (2000). Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press.  Falconer, Kenneth (2013). Fractals, A Very Short Introduction. Oxford University Press. 

External links[edit] Wikimedia Commons has media related to Fractal. Wikibooks has a book on the topic of: Fractals Fractals Scaling and Fractals presented by Shlomo Havlin, Bar-Ilan University Hunting the Hidden Dimension, PBS NOVA, first aired August 24, 2011 Benoit Mandelbrot: Fractals and the Art of Roughness, TED, February 2010 Technical Library on Fractals for controlling fluid Equations of self-similar fractal measure based on the fractional-order calculus(2007) v t e Fractals Characteristics Fractal dimensions Assouad Box-counting Correlation Hausdorff Packing Topological Recursion Self-similarity Iterated function system Barnsley fern Cantor set Dragon curve Koch snowflake Menger sponge Sierpinski carpet Sierpinski triangle Space-filling curve T-square n-flake Strange attractor Multifractal system L-system Fractal canopy Space-filling curve H tree Escape-time fractals Burning Ship fractal Julia set Filled Lyapunov fractal Mandelbrot set Newton fractal Random fractals Brownian motion Brownian tree Diffusion-limited aggregation Fractal landscape Lévy flight Percolation theory Self-avoiding walk People Georg Cantor Felix Hausdorff Gaston Julia Helge von Koch Paul Lévy Aleksandr Lyapunov Benoit Mandelbrot Lewis Fry Richardson Wacław Sierpiński Other "How Long Is the Coast of Britain?" Coastline paradox List of fractals by Hausdorff dimension The Beauty of Fractals (1986 book) Fractal art Chaos: Making a New Science (1987 book) The Fractal Geometry of Nature (1982 book) v t e Chaos theory Chaos theory Anosov diffeomorphism Bifurcation theory Butterfly effect Chaos theory in organizational development Complexity Control of chaos Dynamical system Edge of chaos Fractal Predictability Quantum chaos Santa Fe Institute Synchronization of chaos Unintended consequences Chaotic maps (list) Arnold tongue Arnold's cat map Baker's map Complex quadratic map Complex squaring map Coupled map lattice Double pendulum Double scroll attractor Duffing equation Duffing map Dyadic transformation Dynamical billiards outer Exponential map Gauss map Gingerbreadman map Hénon map Horseshoe map Ikeda map Interval exchange map Kaplan–Yorke map Logistic map Lorenz system Multiscroll attractor Rabinovich–Fabrikant equations Rössler attractor Standard map Swinging Atwood's machine Tent map Tinkerbell map Van der Pol oscillator Zaslavskii map Chaos systems Bouncing ball dynamics Chua's circuit Economic bubble FPUT problem Tilt-A-Whirl Chaos theorists Michael Berry Mary Cartwright Leon O. Chua Mitchell Feigenbaum Celso Grebogi Martin Gutzwiller Brosl Hasslacher Michel Hénon Svetlana Jitomirskaya Sofia Kovalevskaya Bryna Kra Edward Norton Lorenz Aleksandr Lyapunov Benoît Mandelbrot Hee Oh Edward Ott Henri Poincaré Mary Rees Otto Rössler David Ruelle Caroline Series Oleksandr Mykolayovych Sharkovsky Nina Snaith Floris Takens Audrey Terras Mary Tsingou Amie Wilkinson James A. Yorke Lai-Sang Young v t e Mathematics and art Concepts Algorithm Catenary Fractal Golden ratio Plastic number Hyperboloid structure Minimal surface Paraboloid Perspective Camera lucida Camera obscura Projective geometry Proportion Architecture Human Symmetry Tessellation Wallpaper group Forms Algorithmic art Anamorphic art Computer art 4D art Fractal art Islamic geometric patterns Girih Jali Muqarnas Zellige Knotting Architecture Geodesic dome Islamic Mughal Pyramid Vastu shastra Music Origami Textiles String art Sculpture Tiling Artworks List of works designed with the golden ratio Continuum Octacube Pi Pi in the Sky Buildings Hagia Sophia Pantheon Parthenon Pyramid of Khufu Sagrada Família St Mary's Cathedral Sydney Opera House Taj Mahal Artists Renaissance Paolo Uccello Piero della Francesca Albrecht Dürer Leonardo da Vinci Vitruvian Man Parmigianino Self-portrait in a Convex Mirror 19th–20th Century William Blake The Ancient of Days Newton Jean Metzinger Danseuse au café L'Oiseau bleu Man Ray René Magritte La condition humaine Salvador Dalí Crucifixion The Swallow's Tail Giorgio de Chirico M. C. Escher Circle Limit III Print Gallery Relativity Reptiles Waterfall Contemporary Martin and Erik Demaine Scott Draves Jan Dibbets John Ernest Helaman Ferguson Peter Forakis Bathsheba Grossman George W. Hart Desmond Paul Henry John A. Hiigli Anthony Hill Charles Jencks Garden of Cosmic Speculation Robert Longhurst István Orosz Hinke Osinga Hamid Naderi Yeganeh A Bird in Flight Boat Tony Robbin Oliver Sin Hiroshi Sugimoto Daina Taimina Roman Verostko Theorists Ancient Polykleitos Canon Vitruvius De architectura Renaissance Luca Pacioli De divina proportione Piero della Francesca De prospectiva pingendi Leon Battista Alberti De pictura De re aedificatoria Sebastiano Serlio Regole generali d'architettura Andrea Palladio I quattro libri dell'architettura Albrecht Dürer Vier Bücher von Menschlicher Proportion Romantic Frederik Macody Lund "Ad Quadratum" Jay Hambidge "The Greek Vase" Samuel Colman "Nature's Harmonic Unity" Modern Owen Jones The Grammar of Ornament Ernest Hanbury Hankin The Drawing of Geometric Patterns in Saracenic Art G. H. Hardy A Mathematician's Apology George David Birkhoff Aesthetic Measure Douglas Hofstadter Gödel, Escher, Bach Nikos Salingaros The 'Life' of a Carpet Publications Journal of Mathematics and the Arts Organizations Ars Mathematica The Bridges Organization European Society for Mathematics and the Arts Goudreau Museum of Mathematics in Art and Science Institute For Figuring Museum of Mathematics Related topics Droste effect Mathematical beauty Patterns in nature Sacred geometry Category v t e Patterns in nature Patterns Crack Dune Foam Meander Phyllotaxis Soap bubble Symmetry in crystals Quasicrystals in flowers in biology Tessellation Vortex street Wave Widmanstätten pattern Causes Pattern formation Biology Natural selection Camouflage Mimicry Sexual selection Mathematics Chaos theory Fractal Logarithmic spiral Physics Crystal Fluid dynamics Plateau's laws Self-organization People Plato Pythagoras Empedocles Leonardo Fibonacci Liber Abaci Adolf Zeising Ernst Haeckel Joseph Plateau Wilson Bentley D'Arcy Wentworth Thompson On Growth and Form Alan Turing The Chemical Basis of Morphogenesis Aristid Lindenmayer Benoît Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension Related Pattern recognition Emergence Mathematics and art Authority control NDL: 00576561 Retrieved from "" Categories: FractalsMathematical structuresTopologyComputational fields of studyHidden categories: Pages using div col with deprecated parametersCS1 French-language sources (fr)

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia Commons Languages AfrikaansAlemannischالعربيةবাংলাБашҡортсаБългарскиBosanskiCatalàЧӑвашлаČeštinaDanskDeutschEestiΕλληνικάEspañolEsperantoEuskaraفارسیFrançaisGaeilgeGalego한국어हिन्दीHrvatskiIdoBahasa IndonesiaInterlinguaItalianoעבריתಕನ್ನಡქართულიҚазақшаЛезгиLatinaLatviešuLietuviųMagyarമലയാളംBahasa MelayuNederlands日本語NorskNorsk nynorskਪੰਜਾਬੀPolskiPortuguêsRomânăРусскийСаха тылаScotsSicilianuSimple EnglishSlovenčinaSlovenščinaСрпски / srpskiSrpskohrvatski / српскохрватскиSuomiSvenskaதமிழ்ไทยTürkçeУкраїнськаاردوTiếng Việt粵語中文 Edit links This page was last edited on 18 January 2018, at 05:17. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"1.212","walltime":"1.372","ppvisitednodes":{"value":10601,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":303845,"limit":2097152},"templateargumentsize":{"value":8602,"limit":2097152},"expansiondepth":{"value":16,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1117.571 1 -total"," 59.19% 661.438 2 Template:Reflist"," 24.39% 272.627 50 Template:Cite_journal"," 12.62% 141.009 35 Template:Cite_book"," 7.06% 78.956 15 Template:Isbn"," 5.70% 63.683 2 Template:Gallery"," 5.50% 61.411 17 Template:Cite_web"," 4.09% 45.757 1 Template:Convert"," 3.91% 43.659 3 Template:ISBN"," 3.84% 42.942 18 Template:Catalog_lookup_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.562","limit":"10.000"},"limitreport-memusage":{"value":8182312,"limit":52428800}},"cachereport":{"origin":"mw1300","timestamp":"20180118051743","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":85,"wgHostname":"mw1333"});});

Fractal - Photos and All Basic Informations

Fractal More Links

Fractal (disambiguation)Mandelbrot SetSelf-similarMathematicsAbstract ObjectSelf-similarMenger SpongeMandelbrot SetGeometric FiguresScaling (geometry)PolygonAreaVolumeIntegerFractal DimensionTopological DimensionDifferentiable FunctionTopological DimensionEnlargeSierpinski CarpetRecursionContinuous FunctionDifferentiable FunctionBernard BolzanoBernhard RiemannKarl WeierstrassBenoit MandelbrotLatinFractal DimensionPatterns In NatureHausdorff DimensionTopological DimensionFractal DimensionIterationList Of Fractals By Hausdorff DimensionArchitectureChaos TheoryFractal ArtInfinite RegressHomunculusFractal DimensionShapesReasonFractal DimensionDifferentiable FunctionRectifiable CurveEnlargeKoch SnowflakeMathematicsGottfried LeibnizRecursionSelf-similarityStraight LineKarl WeierstrassWeierstrass FunctionGraph Of A FunctionIntuition (knowledge)Continuous FunctionNowhere DifferentiableGeorg CantorSubsetCantor SetFelix KleinHenri PoincaréEnlargeJulia SetEnlargeSierpinski TriangleHelge Von KochKoch SnowflakeWacław SierpińskiSierpinski TriangleSierpinski CarpetPierre FatouGaston JuliaComplex NumbersStrange AttractorsFelix HausdorffPaul Lévy (mathematician)Lévy C CurveEnlargeStrange AttractorMultifractalEnlargeEnlargeBenoit MandelbrotHow Long Is The Coast Of Britain? Statistical Self-Similarity And Fractional DimensionLewis Fry RichardsonMandelbrot SetLoren CarpenterSIGGRAPHShapeFractal DimensionComplexityHausdorff–Besicovitch DimensionLebesgue Covering DimensionSpace-filling CurveHilbert CurveFractal DimensionMandelbrot SetStochasticHow Long Is The Coast Of Britain? Statistical Self-Similarity And Fractional DimensionMultifractalEmergent PropertiesEuclidean GeometryRecursionHausdorff DimensionTopological DimensionWiener ProcessBrownian MotionEnlargeIn SilicoL-systemsFractal-generating SoftwareButterfly EffectPredictabilityIterated Function SystemsKoch SnowflakeCantor SetSierpinski CarpetSierpinski GasketPeano CurveDragon CurveT-Square (fractal)Menger SpongeStrange AttractorLogistic MapL-systemTurtle GraphicsSpace-filling CurvesFormulaRecurrence RelationComplex PlaneMandelbrot SetJulia SetBurning Ship FractalNova FractalLyapunov FractalLévy FlightPercolation TheorySelf-avoiding WalkFractal LandscapesBrownian MotionBrownian TreeDiffusion-limited AggregationEnlargeFinite Subdivision RuleAlternating LinkFinite Subdivision RuleTopologicalCell DivisionCantor SetSierpinski CarpetBarycentric SubdivisionEnlargeFractal FlameFractal AnalysisArtifact (error)Circadian RhythmIn SilicoFractal-generating SoftwarePatterns In NatureAlgorithmL-systemsFrondFernPatterns In NatureRiverFault LineMountainCrater (disambiguation)LightningTreeAlgaAnimal ColorationRomanesco BroccoliPineappleHeart SoundsSnowflakePsychological Subjective PerceptionCrystalBlood VesselPulmonary VesselsWind WaveDNARings Of SaturnProteinsTurbulenceFrost Crystals Occurring Naturally On Cold Glass Form Fractal PatternsFractal Basin Boundary In A Geometrical Optical SystemA Fractal Is Formed When Pulling Apart Two Glue-covered Acrylic SheetsAcryloyl GroupHigh Voltage Breakdown Within A 4 in (100 mm) Block Of Acrylic Creates A Fractal Lichtenberg FigureLichtenberg FigureRomanesco Broccoli, Showing Self-similar Form Approximating A Natural FractalRomanesco BroccoliSelf-similarFractal Defrosting Patterns, Polar Mars. The Patterns Are Formed By Sublimation Of Frozen CO2. Width Of Image Is About A Kilometer.Slime Mold Brefeldia Maxima Growing Fractally On WoodSlime MoldBrefeldia MaximaFractal ArtMathematics And ArtJackson PollockDecalcomaniaMax ErnstRon EglashAfrican ArtGameDivinationTradeArchitectureHokky SitungkirIndonesiaBatikOrnament (art)Michael SilverblattDavid Foster WallaceInfinite JestSierpinski TriangleA Fractal That Models The Surface Of A Mountain (animation)3D Recursive ImageRecursive Fractal Butterfly ImageIon PropulsionFractal AnalysisFractal AntennaCategorisationHistopathologyFractal LandscapeCoastComplexityMichaelis-Menten KineticsAlgorithmic CompositionSignal (information Theory)Fractal CompressionFractal In Soil MechanicsGame DesignComputer GraphicsLifeProcedural GenerationFracture MechanicsSAXST-shirtFashionMARPATDigital SundialFractal Dimension On NetworksMedicineNeuroscienceDiagnostic ImagingPathologyGeologyGeographyArchaeologySoil MechanicsSeismologySearch And RescueTechnical AnalysisMorton OrderGPUCache CoherencyTexture MappingRasterisationPortal:MathematicsBanach Fixed Point TheoremBifurcation TheoryBox CountingCymaticsDiamond-square AlgorithmDroste EffectFeigenbaum FunctionForm ConstantFractal CosmologyFractal DerivativeFractalgridFractal StringFractonGraftalGreebleLacunarityList Of Fractals By Hausdorff DimensionMandelbulbMandelboxMacrocosm And MicrocosmMultifractal SystemMultiplicative CalculusNewton FractalPercolationPower LawList Of Important Publications In MathematicsRandom WalkSelf-referenceStrange LoopTurbulenceWiener ProcessHomeomorphismDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-387-94153-0International Standard Book NumberSpecial:BookSources/978-0-7167-1186-5International Standard Book NumberSpecial:BookSources/0-470-84862-6International Standard Book NumberSpecial:BookSources/0-500-27693-5International Standard Book NumberSpecial:BookSources/978-981-02-0668-0Gerald L. AlexandersonInternational Standard Book NumberSpecial:BookSources/978-1-56881-340-0International Standard Book NumberSpecial:BookSources/978-0-387-20158-0International Standard Book NumberSpecial:BookSources/978-1-84046-123-7Digital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-8133-4153-8International Standard Book NumberSpecial:BookSources/978-1-4899-2124-6International Standard Book NumberSpecial:BookSources/978-0-387-74749-1International Standard Book NumberSpecial:BookSources/0-471-13938-6BibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierCello Suites (Bach)Digital Object IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierShlomo HavlinBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/9780731705054OCLCDigital Object IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/978-3-7643-7172-2BibcodeDigital Object IdentifierDigital Object IdentifierSocial Science Research NetworkInternational Standard Book NumberSpecial:BookSources/978-1-4027-5796-9BibcodeDigital Object IdentifierPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-306-44702-0International Standard Book NumberSpecial:BookSources/978-0-387-74748-4Digital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-19-530059-8International Standard Book NumberSpecial:BookSources/978-0-444-50002-1International Standard Book NumberSpecial:BookSources/978-3-7643-7172-2International Standard Book NumberSpecial:BookSources/981-02-3792-8International Standard Book NumberSpecial:BookSources/978-981-02-3792-9Digital Object IdentifierBibcodeDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-3-540-40754-6International Standard Book NumberSpecial:BookSources/978-2-86332-130-0International Standard Book NumberSpecial:BookSources/978-981-02-3792-9International Standard Book NumberSpecial:BookSources/978-0-7503-0400-9International Standard Book NumberSpecial:BookSources/9780719034343Digital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierArXivBibcodeDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-979-22-4484-7International Standard Book NumberSpecial:BookSources/978-1-4939-3995-4Digital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-1-4577-1596-9ArXivBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierQiuming ChengDigital Object IdentifierArXivBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierPubMed IdentifierDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-988-17-0125-1Digital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-387-75888-6ArXivBibcodeDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/0-12-079061-0International Standard Book NumberSpecial:BookSources/978-3-8376-2829-6International Standard Book NumberSpecial:BookSources/0-471-92287-0Heinz-Otto PeitgenInternational Standard Book NumberSpecial:BookSources/0-387-97903-4Benoit MandelbrotThe Fractal Geometry Of NatureInternational Standard Book NumberSpecial:BookSources/0-7167-1186-9International Standard Book NumberSpecial:BookSources/0-387-96608-0Clifford A. PickoverInternational Standard Book NumberSpecial:BookSources/0-444-50002-2International Standard Book NumberSpecial:BookSources/1-878739-46-8International Standard Book NumberSpecial:BookSources/0-691-08551-XInternational Standard Book NumberSpecial:BookSources/0-691-02445-6International Standard Book NumberSpecial:BookSources/978-0-19-850839-7International Standard Book NumberSpecial:BookSources/0-201-62630-6International Standard Book NumberSpecial:BookSources/1-904555-05-5Arthur C. ClarkeMandelbrot SetInternational Standard Book NumberSpecial:BookSources/9787535722348International Standard Book NumberSpecial:BookSources/2-225-85130-1International Standard Book NumberSpecial:BookSources/978-0-387-94153-0Shlomo HavlinBar-Ilan UniversityPBSNova (TV Series)TED (conference)Template:FractalsTemplate Talk:FractalsFractal DimensionAssouad DimensionMinkowski–Bouligand DimensionCorrelation DimensionHausdorff DimensionPacking DimensionLebesgue Covering DimensionRecursionSelf-similarityBarnsley FernIterated Function SystemBarnsley FernCantor SetDragon CurveKoch SnowflakeMenger SpongeSierpinski CarpetSierpinski TriangleSpace-filling CurveT-square (fractal)N-flakeStrange AttractorMultifractal SystemL-systemFractal CanopySpace-filling CurveH TreeFractalBurning Ship FractalJulia SetFilled Julia SetLyapunov FractalMandelbrot SetNewton FractalBrownian MotionBrownian TreeDiffusion-limited AggregationFractal LandscapeLévy FlightPercolation TheorySelf-avoiding WalkGeorg CantorFelix HausdorffGaston JuliaHelge Von KochPaul Lévy (mathematician)Aleksandr LyapunovBenoit MandelbrotLewis Fry RichardsonWacław SierpińskiHow Long Is The Coast Of Britain? Statistical Self-Similarity And Fractional DimensionCoastline ParadoxList Of Fractals By Hausdorff DimensionThe Beauty Of FractalsFractal ArtChaos: Making A New ScienceThe Fractal Geometry Of NatureTemplate:Chaos TheoryTemplate Talk:Chaos TheoryChaos TheoryAnosov DiffeomorphismBifurcation TheoryButterfly EffectChaos Theory In Organizational DevelopmentComplexityControl Of ChaosDynamical SystemEdge Of ChaosPredictabilityQuantum ChaosSanta Fe InstituteSynchronization Of ChaosUnintended ConsequencesConus Textile ShellCircle Map With Black Arnold TonguesChaos TheoryList Of Chaotic MapsArnold TongueArnold's Cat MapBaker's MapComplex Quadratic PolynomialComplex Squaring MapCoupled Map LatticeDouble PendulumDouble Scroll AttractorDuffing EquationDuffing MapDyadic TransformationDynamical BilliardsOuter BilliardExponential Map (discrete Dynamical Systems)Gauss Iterated MapGingerbreadman MapHénon MapHorseshoe MapIkeda MapInterval Exchange TransformationKaplan–Yorke MapLogistic MapLorenz SystemMultiscroll AttractorRabinovich–Fabrikant EquationsRössler AttractorStandard MapSwinging Atwood's MachineTent MapTinkerbell MapVan Der Pol OscillatorZaslavskii MapBouncing Ball DynamicsChua's CircuitEconomic BubbleFermi–Pasta–Ulam–Tsingou ProblemTilt-A-WhirlMichael Berry (physicist)Mary CartwrightLeon O. ChuaMitchell FeigenbaumCelso GrebogiMartin GutzwillerBrosl HasslacherMichel HénonSvetlana JitomirskayaSofia KovalevskayaBryna KraEdward Norton LorenzAleksandr LyapunovBenoit MandelbrotHee OhEdward OttHenri PoincaréMary ReesOtto RösslerDavid RuelleCaroline SeriesOleksandr Mykolayovych SharkovskyNina SnaithFloris TakensAudrey TerrasMary TsingouAmie WilkinsonJames A. YorkeLai-Sang YoungTemplate:Mathematics And ArtTemplate Talk:Mathematics And ArtMathematics And ArtAlgorithmCatenaryGolden RatioPlastic NumberHyperboloid StructureMinimal SurfaceParaboloidPerspective (graphical)Camera LucidaCamera ObscuraProjective GeometryProportion (architecture)Body ProportionsSymmetryTessellationWallpaper GroupFibonacci Word: Detail Of Artwork By Samuel Monnier, 2009Algorithmic ArtAnamorphosisComputer ArtFourth Dimension In ArtFractal ArtIslamic Geometric PatternsGirihJaliMuqarnasZelligeKnotMathematics And ArchitectureGeodesic DomeIslamic ArchitectureMughal ArchitecturePyramidVastu ShastraMusic And MathematicsOrigamiMathematics And Fiber ArtsString ArtMathematical SculptureTiling (mathematics)List Of Works Designed With The Golden RatioContinuum (sculpture)Octacube (sculpture)Pi (art Project)Pi In The SkyMathematics And ArchitectureHagia SophiaPantheon, RomeParthenonGreat Pyramid Of GizaSagrada FamíliaCathedral Of Saint Mary Of The Assumption (San Francisco, California)Sydney Opera HouseTaj MahalList Of Mathematical ArtistsPaolo UccelloPiero Della FrancescaAlbrecht DürerLeonardo Da VinciVitruvian ManParmigianinoSelf-portrait In A Convex MirrorWilliam BlakeThe Ancient Of DaysNewton (Blake)Jean MetzingerDancer In A CaféL'Oiseau Bleu (Metzinger)Man RayRené MagritteThe Human Condition (painting)Salvador DalíCrucifixion (Corpus Hypercubus)The Swallow's TailGiorgio De ChiricoM. C. EscherCircle Limit IIIPrint Gallery (M. C. Escher)Relativity (M. C. Escher)Reptiles (M. C. Escher)Waterfall (M. C. Escher)Martin DemaineErik DemaineScott DravesJan DibbetsJohn ErnestHelaman FergusonPeter ForakisBathsheba GrossmanGeorge W. HartDesmond Paul HenryJohn A. HiigliAnthony Hill (artist)Charles JencksGarden Of Cosmic SpeculationRobert LonghurstIstván OroszHinke OsingaHamid Naderi YeganehA Bird In FlightBoat (drawing)Tony RobbinOliver SinHiroshi SugimotoDaina TaiminaRoman VerostkoPolykleitosVitruviusDe ArchitecturaLuca PacioliDe Divina ProportionePiero Della FrancescaDe Prospectiva PingendiLeon Battista AlbertiDe PicturaDe Re AedificatoriaSebastiano SerlioAndrea PalladioI Quattro Libri Dell'architetturaAlbrecht DürerFrederik Macody LundJay HambidgeSamuel ColmanOwen Jones (architect)The Grammar Of OrnamentErnest Hanbury HankinG. H. HardyA Mathematician's ApologyGeorge David BirkhoffDouglas HofstadterGödel, Escher, BachNikos SalingarosJournal Of Mathematics And The ArtsArs Mathematica (organization)The Bridges OrganizationEuropean Society For Mathematics And The ArtsGoudreau Museum Of Mathematics In Art And ScienceInstitute For FiguringMuseum Of MathematicsDroste EffectMathematical BeautyPatterns In NatureSacred GeometryCategory:Mathematics And ArtTemplate:Patterns In NaturePatterns In NatureFractureDuneFoamMeanderPhyllotaxisSoap BubbleSymmetryCrystal SymmetryQuasicrystalsFloral SymmetrySymmetry In BiologyTessellationVortex StreetWaveWidmanstätten PatternPattern FormationBiologyNatural SelectionCamouflageMimicrySexual SelectionMathematicsChaos TheoryLogarithmic SpiralPhysicsCrystalFluid DynamicsPlateau's LawsSelf-organizationPlatoPythagorasEmpedoclesLeonardo FibonacciLiber AbaciAdolf ZeisingErnst HaeckelJoseph PlateauWilson BentleyD'Arcy Wentworth ThompsonOn Growth And FormAlan TuringThe Chemical Basis Of MorphogenesisAristid LindenmayerBenoit MandelbrotHow Long Is The Coast Of Britain? Statistical Self-Similarity And Fractional DimensionPattern Recognition (psychology)EmergenceMathematics And ArtHelp:Authority ControlNational Diet LibraryHelp:CategoryCategory:FractalsCategory:Mathematical StructuresCategory:TopologyCategory:Computational Fields Of StudyCategory:Pages Using Div Col With Deprecated ParametersCategory:CS1 French-language Sources (fr)Discussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link