Contents 1 Examples 2 Basic formula 3 Reformulation as log-linear growth 4 Differential equation 5 Difference equation 6 Other growth rates 7 Limitations of models 8 Exponential stories 8.1 Rice on a chessboard 8.2 Water lily 9 See also 10 References and footnotes 10.1 Sources 11 External links

Examples[edit] Bacteria exhibit exponential growth under optimal conditions. This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2013) (Learn how and when to remove this template message) Biology The number of microorganisms in a culture will increase exponentially until an essential nutrient is exhausted. Typically the first organism splits into two daughter organisms, who then each split to form four, who split to form eight, and so on. Because exponential growth indicates constant growth rate, it is frequently assumed that exponentially growing cells are at a steady-state. However, cells can grow exponentially at a constant rate while remodelling their metabolism and gene expression.[1] A virus (for example SARS, or smallpox) typically will spread exponentially at first, if no artificial immunization is available. Each infected person can infect multiple new people. Human population, if the number of births and deaths per person per year were to remain at current levels (but also see logistic growth). For example, according to the United States Census Bureau, over the last 100 years (1910 to 2010), the population of the United States of America is exponentially increasing at an average rate of one and a half percent a year (1.5%). This means that the doubling time of the American population (depending on the yearly growth in population) is approximately 50 years.[2] Physics Avalanche breakdown within a dielectric material. A free electron becomes sufficiently accelerated by an externally applied electrical field that it frees up additional electrons as it collides with atoms or molecules of the dielectric media. These secondary electrons also are accelerated, creating larger numbers of free electrons. The resulting exponential growth of electrons and ions may rapidly lead to complete dielectric breakdown of the material. Nuclear chain reaction (the concept behind nuclear reactors and nuclear weapons). Each uranium nucleus that undergoes fission produces multiple neutrons, each of which can be absorbed by adjacent uranium atoms, causing them to fission in turn. If the probability of neutron absorption exceeds the probability of neutron escape (a function of the shape and mass of the uranium), k > 0 and so the production rate of neutrons and induced uranium fissions increases exponentially, in an uncontrolled reaction. "Due to the exponential rate of increase, at any point in the chain reaction 99% of the energy will have been released in the last 4.6 generations. It is a reasonable approximation to think of the first 53 generations as a latency period leading up to the actual explosion, which only takes 3–4 generations."[3] Positive feedback within the linear range of electrical or electroacoustic amplification can result in the exponential growth of the amplified signal, although resonance effects may favor some component frequencies of the signal over others. Economics Economic growth is expressed in percentage terms, implying exponential growth. For example, U.S. GDP per capita has grown at an exponential rate of approximately two percent since World War 2.[citation needed] Finance Compound interest at a constant interest rate provides exponential growth of the capital. See also rule of 72. Pyramid schemes or Ponzi schemes also show this type of growth resulting in high profits for a few initial investors and losses among great numbers of investors. Computer technology Processing power of computers. See also Moore's law and technological singularity. (Under exponential growth, there are no singularities. The singularity here is a metaphor, meant to convey an unimaginable future. The link of this hypothetical concept with exponential growth is most vocally made by futurist Ray Kurzweil.) In computational complexity theory, computer algorithms of exponential complexity require an exponentially increasing amount of resources (e.g. time, computer memory) for only a constant increase in problem size. So for an algorithm of time complexity 2x, if a problem of size x = 10 requires 10 seconds to complete, and a problem of size x = 11 requires 20 seconds, then a problem of size x = 12 will require 40 seconds. This kind of algorithm typically becomes unusable at very small problem sizes, often between 30 and 100 items (most computer algorithms need to be able to solve much larger problems, up to tens of thousands or even millions of items in reasonable times, something that would be physically impossible with an exponential algorithm). Also, the effects of Moore's Law do not help the situation much because doubling processor speed merely allows you to increase the problem size by a constant. E.g. if a slow processor can solve problems of size x in time t, then a processor twice as fast could only solve problems of size x + constant in the same time t. So exponentially complex algorithms are most often impractical, and the search for more efficient algorithms is one of the central goals of computer science today.

Basic formula[edit] A quantity x depends exponentially on time t if x ( t ) = a ⋅ b t / τ {\displaystyle x(t)=a\cdot b^{t/\tau }} where the constant a is the initial value of x, x ( 0 ) = a , {\displaystyle x(0)=a\,,} the constant b is a positive growth factor, and τ is the time constant—the time required for x to increase by one factor of b: x ( t + τ ) = a ⋅ b t + τ τ = a ⋅ b t τ ⋅ b τ τ = x ( t ) ⋅ b . {\displaystyle x(t+\tau )=a\cdot b^{\frac {t+\tau }{\tau }}=a\cdot b^{\frac {t}{\tau }}\cdot b^{\frac {\tau }{\tau }}=x(t)\cdot b\,.} If τ > 0 and b > 1, then x has exponential growth. If τ < 0 and b > 1, or τ > 0 and 0 < b < 1, then x has exponential decay. Example: If a species of bacteria doubles every ten minutes, starting out with only one bacterium, how many bacteria would be present after one hour? The question implies a = 1, b = 2 and τ = 10 min. x ( t ) = a ⋅ b t / τ = 1 ⋅ 2 ( 60  min ) / ( 10  min ) {\displaystyle x(t)=a\cdot b^{t/\tau }=1\cdot 2^{(60{\text{ min}})/(10{\text{ min}})}} x ( 1  hr ) = 1 ⋅ 2 6 = 64. {\displaystyle x(1{\text{ hr}})=1\cdot 2^{6}=64.} After one hour, or six ten-minute intervals, there would be sixty-four bacteria. Many pairs (b, τ) of a dimensionless non-negative number b and an amount of time τ (a physical quantity which can be expressed as the product of a number of units and a unit of time) represent the same growth rate, with τ proportional to log b. For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base. The most common forms are the following: x ( t ) = x 0 ⋅ e k t = x 0 ⋅ e t / τ = x 0 ⋅ 2 t / T = x 0 ⋅ ( 1 + r 100 ) t / p , {\displaystyle x(t)=x_{0}\cdot e^{kt}=x_{0}\cdot e^{t/\tau }=x_{0}\cdot 2^{t/T}=x_{0}\cdot \left(1+{\frac {r}{100}}\right)^{t/p},} where x0 expresses the initial quantity x(0). Parameters (negative in the case of exponential decay): The growth constant k is the frequency (number of times per unit time) of growing by a factor e; in finance it is also called the logarithmic return, continuously compounded return, or force of interest. The e-folding time τ is the time it takes to grow by a factor e. The doubling time T is the time it takes to double. The percent increase r (a dimensionless number) in a period p. The quantities k, τ, and T, and for a given p also r, have a one-to-one connection given by the following equation (which can be derived by taking the natural logarithm of the above): k = 1 τ = ln ⁡ 2 T = ln ⁡ ( 1 + r 100 ) p {\displaystyle k={\frac {1}{\tau }}={\frac {\ln 2}{T}}={\frac {\ln \left(1+{\frac {r}{100}}\right)}{p}}} where k = 0 corresponds to r = 0 and to τ and T being infinite. If p is the unit of time the quotient t/p is simply the number of units of time. Using the notation t for the (dimensionless) number of units of time rather than the time itself, t/p can be replaced by t, but for uniformity this has been avoided here. In this case the division by p in the last formula is not a numerical division either, but converts a dimensionless number to the correct quantity including unit. A popular approximated method for calculating the doubling time from the growth rate is the rule of 70, i.e. T ≃ 70 / r {\displaystyle T\simeq 70/r} . Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/t and 72/t approximations. In the SVG version, hover over a graph to highlight it and its complement.

Reformulation as log-linear growth[edit] If a variable x exhibits exponential growth according to x ( t ) = x 0 ( 1 + r ) t {\displaystyle x(t)=x_{0}(1+r)^{t}} , then the log (to any base) of x grows linearly over time, as can be seen by taking logarithms of both sides of the exponential growth equation: log ⁡ x ( t ) = log ⁡ x 0 + t ⋅ log ⁡ ( 1 + r ) . {\displaystyle \log x(t)=\log x_{0}+t\cdot \log(1+r).} This allows an exponentially growing variable to be modeled with a log-linear model. For example, if one wishes to empirically estimate the growth rate from intertemporal data on x, one can linearly regress log x on t.

Differential equation[edit] The exponential function x ( t ) = x ( 0 ) e k t {\displaystyle x(t)=x(0)e^{kt}} satisfies the linear differential equation: d x d t = k x {\displaystyle \!\,{\frac {dx}{dt}}=kx} saying that the change per instant of time of x at time t is proportional to the value of x(t), and x(t) has the initial value x ( 0 ) . {\displaystyle x(0).} The differential equation is solved by direct integration: d x d t = k x d x x = k d t ∫ x ( 0 ) x ( t ) d x x = k ∫ 0 t d t ln ⁡ x ( t ) x ( 0 ) = k t . {\displaystyle {\begin{aligned}{\frac {dx}{dt}}&=kx\\[5pt]{\frac {dx}{x}}&=k\,dt\\[5pt]\int _{x(0)}^{x(t)}{\frac {dx}{x}}&=k\int _{0}^{t}\,dt\\[5pt]\ln {\frac {x(t)}{x(0)}}&=kt.\end{aligned}}} so that x ( t ) = x ( 0 ) e k t {\displaystyle x(t)=x(0)e^{kt}} In the above differential equation, if k < 0, then the quantity experiences exponential decay. For a nonlinear variation of this growth model see logistic function.

Difference equation[edit] The difference equation x t = a ⋅ x t − 1 {\displaystyle x_{t}=a\cdot x_{t-1}} has solution x t = x 0 ⋅ a t , {\displaystyle x_{t}=x_{0}\cdot a^{t},} showing that x experiences exponential growth.

Other growth rates[edit] In the long run, exponential growth of any kind will overtake linear growth of any kind (the basis of the Malthusian catastrophe) as well as any polynomial growth, i.e., for all α: lim t → ∞ t α a e t = 0. {\displaystyle \lim _{t\rightarrow \infty }{t^{\alpha } \over ae^{t}}=0.} There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run). See Degree of a polynomial#The degree computed from the function values. Growth rates may also be faster than exponential. In the most extreme case, when growth increases without bound in finite time, it is called hyperbolic growth. In between exponential and hyperbolic growth lie more classes of growth behavior, like the hyperoperations beginning at tetration, and A ( n , n ) {\displaystyle A(n,n)} , the diagonal of the Ackermann function.

Limitations of models[edit] Exponential growth models of physical phenomena only apply within limited regions, as unbounded growth is not physically realistic. Although growth may initially be exponential, the modelled phenomena will eventually enter a region in which previously ignored negative feedback factors become significant (leading to a logistic growth model) or other underlying assumptions of the exponential growth model, such as continuity or instantaneous feedback, break down. Further information: Limits to Growth, Malthusian catastrophe, and Apparent infection rate

Exponential stories[edit] Rice on a chessboard[edit] See also: Wheat and chessboard problem According to an old legend, vizier Sissa Ben Dahir presented an Indian King Sharim with a beautiful, hand-made chessboard. The king asked what he would like in return for his gift and the courtier surprised the king by asking for one grain of rice on the first square, two grains on the second, four grains on the third etc. The king readily agreed and asked for the rice to be brought. All went well at first, but the requirement for 2n−1 grains on the nth square demanded over a million grains on the 21st square, more than a million million (a.k.a. trillion) on the 41st and there simply was not enough rice in the whole world for the final squares. (From Swirski, 2006)[4] The second half of the chessboard is the time when an exponentially growing influence is having a significant economic impact on an organization's overall business strategy. Water lily[edit] French children are told a story in which they imagine having a pond with water lily leaves floating on the surface. The lily population doubles in size every day and, if left unchecked, it will smother the pond in thirty days killing all the other living things in the water. Day after day, the plant's growth is small and so it is decided that it shall be cut down when the water lilies cover half of the pond. The children are then asked on what day will half of the pond be covered in water lilies. The solution is simple when one considers that the water lilies must double to completely cover the pond on the thirtieth day. Therefore, the water lilies will cover half of the pond on the twenty-ninth day. There is only one day to save the pond. (From Meadows et al. 1972)[4]

See also[edit] Accelerating change Albert Allen Bartlett Arthrobacter Asymptotic notation Bacterial growth Bounded growth Cell growth Exponential algorithm EXPSPACE EXPTIME Hausdorff dimension Hyperbolic growth Information explosion Law of accelerating returns List of exponential topics Logarithmic growth Logistic curve Malthusian growth model Menger sponge Moore's law Multiplicative calculus Stein's law

References and footnotes[edit] ^ Slavov, Nikolai; Budnik, Bogdan A.; Schwab, David; Airoldi, Edoardo M.; van Oudenaarden, Alexander (2014). "Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis". Cell Reports. 7 (3): 705–714. doi:10.1016/j.celrep.2014.03.057. ISSN 2211-1247. PMC 4049626 . PMID 24767987.  ^ 2010 Census Data, "U.S. Census Bureau", 20 Dec 2012, Internet Archive: ^ Sublette, Carey. "Introduction to Nuclear Weapon Physics and Design". Nuclear Weapons Archive. Retrieved 2009-05-26.  ^ a b Porritt, Jonathan (2005). Capitalism: as if the world matters. London: Earthscan. p. 49. ISBN 1-84407-192-8.  Sources[edit] Meadows, Donella H., Dennis L. Meadows, Jørgen Randers, and William W. Behrens III. (1972) The Limits to Growth. New York: University Books. ISBN 0-87663-165-0 Porritt, J. Capitalism as if the world matters, Earthscan 2005. ISBN 1-84407-192-8 Swirski, Peter. Of Literature and Knowledge: Explorations in Narrative Thought Experiments, Evolution, and Game Theory. New York: Routledge. ISBN 0-415-42060-1 Thomson, David G. Blueprint to a Billion: 7 Essentials to Achieve Exponential Growth, Wiley Dec 2005, ISBN 0-471-74747-5 Tsirel, S. V. 2004. On the Possible Reasons for the Hyperexponential Growth of the Earth Population. Mathematical Modeling of Social and Economic Dynamics / Ed. by M. G. Dmitriev and A. P. Petrov, pp. 367–9. Moscow: Russian State Social University, 2004.

External links[edit] Growth in a Finite World – Sustainability and the Exponential Function — Presentation Dr. Albert Bartlett: Arithmetic, Population and Energy — streaming video and audio 58 min Retrieved from "" Categories: Ordinary differential equationsExponentialsMathematical modelingHidden categories: Articles needing additional references from August 2013All articles needing additional referencesAll articles with unsourced statementsArticles with unsourced statements from August 2013Pages using div col with deprecated parameters

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia CommonsWikiquote Languages العربيةCatalàDanskDeutschEestiΕλληνικάEspañolEuskaraفارسیFrançaisInterlinguaÍslenskaItalianoKreyòl ayisyenMagyarNederlandsNordfriiskNorskNorsk nynorskPolskiPortuguêsРусскийSuomiTürkçe中文 Edit links This page was last edited on 8 January 2018, at 19:20. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.248","walltime":"1.363","ppvisitednodes":{"value":1996,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":23521,"limit":2097152},"templateargumentsize":{"value":4405,"limit":2097152},"expansiondepth":{"value":15,"limit":40},"expensivefunctioncount":{"value":2,"limit":500},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 249.516 1 -total"," 30.22% 75.393 1 Template:Reflist"," 19.10% 47.669 1 Template:Refimprove_section"," 17.77% 44.328 1 Template:Cite_journal"," 17.30% 43.154 4 Template:ISBN"," 13.27% 33.122 1 Template:Refimprove"," 11.37% 28.370 1 Template:Ambox"," 8.77% 21.871 1 Template:Citation_needed"," 7.72% 19.259 1 Template:Fix"," 6.29% 15.698 4 Template:Catalog_lookup_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.081","limit":"10.000"},"limitreport-memusage":{"value":3278662,"limit":52428800}},"cachereport":{"origin":"mw1214","timestamp":"20180115191632","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":1481,"wgHostname":"mw1214"});});

Exponential_growth - Photos and All Basic Informations

Exponential_growth More Links

EnlargePolynomialLinear GrowthRate (mathematics)Proportionality (mathematics)Exponential FunctionExponential DecayDomain Of A FunctionGeometric ProgressionAssociative PropertyExponential FunctionPower FunctionBacteriaWikipedia:VerifiabilityHelp:Introduction To Referencing With Wiki Markup/1Help:Maintenance Template RemovalBiologyMicroorganismMicrobiological CultureCell DivisionSARSSmallpoxImmunizationWorld PopulationLogistic GrowthUnited States Census BureauDoubling TimePhysicsAvalanche BreakdownDielectricElectronElectrical FieldAtomMoleculeDielectric BreakdownNuclear Chain ReactionNuclear ReactorsNuclear WeaponsUraniumAtomic NucleusNuclear FissionNeutronAbsorption (chemistry)ProbabilityFunction (mathematics)ShapeMassPositive FeedbackAmplifierResonanceEconomicsEconomic GrowthWikipedia:Citation NeededFinanceCompound InterestRule Of 72Pyramid SchemePonzi SchemeComputerClock RateMoore's LawTechnological SingularityRaymond KurzweilComputational Complexity TheoryMoore's LawTime ConstantExponential DecayDimensionlessPhysical QuantityE (mathematical Constant)ExponentiationFrequencyContinuous CompoundingCompound InterestE-foldingE (mathematical Constant)Doubling TimeRule Of 70Graphs Comparing Doubling Times And Half Lives Of Exponential Growths (bold Lines) And Decay (faint Lines), And Their 70/t And 72/t Approximations. In The SVG Version, Hover Over A Graph To Highlight It And Its Complement.File:Doubling Time Vs Half Life.svgLinear FunctionLogarithmNonlinear RegressionLinear RegressionExponential FunctionLinear Differential EquationInitial ValueExponential DecayNonlinearLogistic FunctionDifference EquationMalthusian CatastrophePolynomialDegree Of A PolynomialHyperbolic GrowthHyperoperationTetrationAckermann FunctionNegative FeedbackLogistic GrowthLimits To GrowthMalthusian CatastropheApparent Infection RateWheat And Chessboard ProblemChessboardOrders Of Magnitude (numbers)Second Half Of The ChessboardNymphaeaceaeAccelerating ChangeAlbert Allen BartlettArthrobacterAsymptotic NotationBacterial GrowthBounded GrowthCell GrowthExponential AlgorithmEXPSPACEEXPTIMEHausdorff DimensionHyperbolic GrowthInformation ExplosionLaw Of Accelerating ReturnsList Of Exponential TopicsLogarithmic GrowthLogistic CurveMalthusian Growth ModelMenger SpongeMoore's LawMultiplicative CalculusStein's LawDigital Object IdentifierInternational Standard Serial NumberPubMed CentralPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/1-84407-192-8The Limits To GrowthInternational Standard Book NumberSpecial:BookSources/0-87663-165-0International Standard Book NumberSpecial:BookSources/1-84407-192-8International Standard Book NumberSpecial:BookSources/0-415-42060-1International Standard Book NumberSpecial:BookSources/0-471-74747-5Help:CategoryCategory:Ordinary Differential EquationsCategory:ExponentialsCategory:Mathematical ModelingCategory:Articles Needing Additional References From August 2013Category:All Articles Needing Additional ReferencesCategory:All Articles With Unsourced StatementsCategory:Articles With Unsourced Statements From August 2013Category:Pages Using Div Col With Deprecated ParametersDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link