Contents 1 History 2 Cell features 2.1 Internal membrane 2.2 Mitochondria and plastids 2.3 Cytoskeletal structures 2.4 Cell wall 3 Differences among eukaryotic cells 3.1 Animal cell 3.2 Plant cell 3.3 Fungal cell 3.4 Other eukaryotic cells 4 Reproduction 5 Classification 5.1 Phylogeny 5.1.1 Five supergroups 5.1.2 Cavalier-Smith's tree 6 Origin of eukaryotes 6.1 Fossils 6.2 Relationship to Archaea 6.3 Endomembrane system and mitochondria 6.4 Hypotheses 6.4.1 Autogenous models 6.4.2 Chimeric models 7 See also 8 References 9 External links

History[edit] Konstantin Mereschkowski proposed a symbiotic origin for cells with nuclei. In 1905 and 1910, the Russian biologist Konstantin Mereschkowski (1855–1921) argued three things about the origin of nucleated cells. Firstly, plastids were reduced cyanobacteria in a symbiosis with a non-photosynthetic (heterotrophic) host. Secondly, the host had earlier in evolution formed by symbiosis between an amoeba-like host and a bacteria-like ("micrococcal") cell that formed the nucleus. Thirdly, plants inherited photosynthesis from cyanobacteria.[8] The concept of the eukaryote has been attributed to the French biologist Edouard Chatton (1883-1947). The terms prokaryote and eukaryote were more definitively reintroduced by the Canadian microbiologist Roger Stanier and the Dutch-American microbiologist C. B. van Niel in 1962. In his 1938 work Titres et Travaux Scientifiques, Chatton had proposed the two terms, calling the bacteria prokaryotes and organisms with nuclei in their cells eukaryotes. However he mentioned this in only one paragraph, and the idea was effectively ignored until Chatton's statement was rediscovered by Stanier and van Niel.[9] In 1967, Lynn Margulis provided microbiological evidence for endosymbiosis as the origin of chloroplasts and mitochondria in eukaryotic cells in her paper, On the origin of mitosing cells.[10] In the 1970s, Carl Woese explored microbial phylogenetics, studying variations in 16S ribosomal RNA. This helped to uncover the origin of the eukaryotes and the symbiogenesis of two important eukaryote organelles, mitochondria and chloroplasts. In 1977, Woese and George Fox introduced a "third form of life", which they called the Archaebacteria; in 1990, Woese, Otto Kandler and Mark L. Wheeler renamed this the Archaea.[9] In 1979, G. W. Gould and G. J. Dring suggested that the eukaryotic cell's nucleus came from the ability of Gram-positive bacteria to form endospores. In 1987 and later papers, Thomas Cavalier-Smith proposed instead that the membranes of the nucleus and endoplasmic reticulum first formed by infolding a prokaryote's plasma membrane. In the 1990s, several other biologists proposed endosymbiotic origins for the nucleus, effectively reviving Mereschkowsky's theory.[8]

Cell features[edit] Eukaryotic cells are typically much larger than those of prokaryotes having a volume of around 10,000 times greater than the prokaryotic cell.[11] They have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton composed of microtubules, microfilaments, and intermediate filaments, which play an important role in defining the cell's organization and shape. Eukaryotic DNA is divided into several linear bundles called chromosomes, which are separated by a microtubular spindle during nuclear division. Internal membrane[edit] The endomembrane system and its components Eukaryote cells include a variety of membrane-bound structures, collectively referred to as the endomembrane system.[12] Simple compartments, called vesicles and vacuoles, can form by budding off other membranes. Many cells ingest food and other materials through a process of endocytosis, where the outer membrane invaginates and then pinches off to form a vesicle.[13] It is probable that most other membrane-bound organelles are ultimately derived from such vesicles. Alternatively some products produced by the cell can leave in a vesicle through exocytosis. The nucleus is surrounded by a double membrane (commonly referred to as a nuclear membrane or nuclear envelope), with pores that allow material to move in and out.[14] Various tube- and sheet-like extensions of the nuclear membrane form the endoplasmic reticulum, which is involved in protein transport and maturation. It includes the rough endoplasmic reticulum where ribosomes are attached to synthesize proteins, which enter the interior space or lumen. Subsequently, they generally enter vesicles, which bud off from the smooth endoplasmic reticulum.[15] In most eukaryotes, these protein-carrying vesicles are released and further modified in stacks of flattened vesicles (cisternae), the Golgi apparatus.[16] Vesicles may be specialized for various purposes. For instance, lysosomes contain digestive enzymes that break down most biomolecules in the cytoplasm.[17] Peroxisomes are used to break down peroxide, which is otherwise toxic. Many protozoans have contractile vacuoles, which collect and expel excess water, and extrusomes, which expel material used to deflect predators or capture prey. In higher plants, most of a cell's volume is taken up by a central vacuole, which mostly contains water and primarily maintains its osmotic pressure. Mitochondria and plastids[edit] Simplified structure of a mitochondrion Mitochondria are organelles found in nearly all eukaryotes that provide energy to the cell by converting ingested sugars into ATP.[18] They have two surrounding membranes (each a phospholipid bi-layer), the inner of which is folded into invaginations called cristae, where aerobic respiration takes place. Mitochondria contain their own DNA. They are now generally held to have developed from endosymbiotic prokaryotes, probably proteobacteria. Protozoa and microbes that lack mitochondria, such as the amoebozoan Pelomyxa and metamonads such as Giardia and Trichomonas, have usually been found to contain mitochondrion-derived organelles, such as hydrogenosomes and mitosomes, and thus probably lost the mitochondria secondarily. They obtain energy by enzymatic action on nutrients absorbed from the environment. The metamonad Monocercomonoides has also acquired, by lateral gene transfer, a cytosolic sulphur mobilisation system which provides the clusters of iron and sulfur required for protein synthesis. The normal mitochondrial iron-sulphur cluster pathway has been lost secondarily.[19][20] Plants and various groups of algae also have plastids. Plastids have their own DNA and are developed from endosymbionts, in this case cyanobacteria. They usually take the form of chloroplasts, which like cyanobacteria contain chlorophyll and produce organic compounds (such as glucose) through photosynthesis. Others are involved in storing food. Although plastids probably had a single origin, not all plastid-containing groups are closely related. Instead, some eukaryotes have obtained them from others through secondary endosymbiosis or ingestion.[21] Endosymbiotic origins have also been proposed for the nucleus, and for eukaryotic flagella.[22] Cytoskeletal structures[edit] Main article: Cytoskeleton Longitudinal section through the flagellum of Chlamydomonas reinhardtii Many eukaryotes have long slender motile cytoplasmic projections, called flagella, or similar structures called cilia. Flagella and cilia are sometimes referred to as undulipodia,[23] and are variously involved in movement, feeding, and sensation. They are composed mainly of tubulin. These are entirely distinct from prokaryotic flagellae. They are supported by a bundle of microtubules arising from a centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella also may have hairs, or mastigonemes, and scales connecting membranes and internal rods. Their interior is continuous with the cell's cytoplasm. Microfilamental structures composed of actin and actin binding proteins, e.g., α-actinin, fimbrin, filamin are present in submembraneous cortical layers and bundles, as well. Motor proteins of microtubules, e.g., dynein or kinesin and actin, e.g., myosins provide dynamic character of the network. Centrioles are often present even in cells and groups that do not have flagella, but conifers and flowering plants have neither. They generally occur in groups that give rise to various microtubular roots. These form a primary component of the cytoskeletal structure, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles produce the spindle during nuclear division.[24] The significance of cytoskeletal structures is underlined in the determination of shape of the cells, as well as their being essential components of migratory responses like chemotaxis and chemokinesis. Some protists have various other microtubule-supported organelles. These include the radiolaria and heliozoa, which produce axopodia used in flotation or to capture prey, and the haptophytes, which have a peculiar flagellum-like organelle called the haptonema. Cell wall[edit] Main article: Cell wall The cells of plants, fungi, and most chromalveolates have a cell wall, a layer outside the cell membrane, providing the cell with structural support, protection, and a filtering mechanism. The cell wall also prevents over-expansion when water enters the cell.[25] The major polysaccharides making up the primary cell wall of land plants are cellulose, hemicellulose, and pectin. The cellulose microfibrils are linked via hemicellulosic tethers to form the cellulose-hemicellulose network, which is embedded in the pectin matrix. The most common hemicellulose in the primary cell wall is xyloglucan.[26]

Differences among eukaryotic cells[edit] There are many different types of eukaryotic cells, though animals and plants are the most familiar eukaryotes, and thus provide an excellent starting point for understanding eukaryotic structure. Fungi and many protists have some substantial differences, however. Animal cell[edit] Structure of a typical animal cell Play media 3D Simulation of animal cell Structure of a typical plant cell All animals are eukaryotic. Animal cells are distinct from those of other eukaryotes, most notably plants, as they lack cell walls and chloroplasts and have smaller vacuoles. Due to the lack of a cell wall, animal cells can adopt a variety of shapes. A phagocytic cell can even engulf other structures. There are many other types of cell. For instance, there are approximately 210 distinct cell types in the adult human body. Plant cell[edit] Main article: Plant cell Plant cells are quite different from the cells of the other eukaryotic organisms. Their distinctive features are: A large central vacuole (enclosed by a membrane, the tonoplast), which maintains the cell's turgor and controls movement of molecules between the cytosol and sap[27] A primary cell wall containing cellulose, hemicellulose and pectin, deposited by the protoplast on the outside of the cell membrane; this contrasts with the cell walls of fungi, which contain chitin, and the cell envelopes of prokaryotes, in which peptidoglycans are the main structural molecules The plasmodesmata, linking pores in the cell wall that allow each plant cell to communicate with other adjacent cells;[28] this is different from the functionally analogous system of gap junctions between animal cells. Plastids, especially chloroplasts that contain chlorophyll, the pigment that gives plants their green color and allows them to perform photosynthesis Bryophytes and seedless vascular plants lack flagellae and centrioles except in the sperm cells.[29] Sperm of cycads and Ginkgo are large, complex cells that swim with hundreds to thousands of flagellae.[30] Conifers (Pinophyta) and flowering plants (Angiospermae) lack the flagellae and centrioles that are present in animal cells. Fungal cell[edit] Fungal Hyphae Cells 1- Hyphal wall 2- Septum 3- Mitochondrion 4- Vacuole 5- Ergosterol crystal 6- Ribosome 7- Nucleus 8- Endoplasmic reticulum 9- Lipid body 10- Plasma membrane 11- Spitzenkörper 12- Golgi apparatus The cells of fungi are most similar to animal cells, with the following exceptions:[31] A cell wall that contains chitin Less definition between cells; the hyphae of higher fungi have porous partitions called septa, which allow the passage of cytoplasm, organelles, and, sometimes, nuclei. Primitive fungi have few or no septa, so each organism is essentially a giant multinucleate supercell; these fungi are described as coenocytic. Only the most primitive fungi, chytrids, have flagella. Other eukaryotic cells[edit] Eukaryotes are a very diverse group, and their cell structures are equally diverse. Many have cell walls; many do not. Many have chloroplasts, derived from primary, secondary, or even tertiary endosymbiosis; and many do not. Some groups have unique structures, such as the cyanelles (unusual chloroplasts) of the glaucophytes,[32] the haptonema of the haptophytes, or the ejectosomes of the cryptomonads. Other structures, such as pseudopodia, are found in various eukaryote groups in different forms, such as the lobose amoebozoans or the reticulose foraminiferans.[33]

Reproduction[edit] This diagram illustrates the twofold cost of sex. If each individual were to contribute to the same number of offspring (two), (a) the sexual population remains the same size each generation, where the (b) asexual population doubles in size each generation. Cell division generally takes place asexually by mitosis, a process that allows each daughter nucleus to receive one copy of each chromosome. In most eukaryotes, there is also a process of sexual reproduction, typically involving an alternation between haploid generations, wherein only one copy of each chromosome is present, and diploid generations, wherein two copies of each chromosome are present, occurring through meiosis. There is considerable variation in this pattern. Eukaryotes have a smaller surface area to volume ratio than prokaryotes, and thus have lower metabolic rates and longer generation times.[34] In some multicellular organisms, cells specialized for metabolism have enlarged surface areas, such as intestinal villi. The evolution of sexual reproduction may be a primordial and fundamental characteristic of eukaryotes. Based on a phylogenetic analysis, Dacks and Roger proposed that facultative sex was present in the common ancestor of all eukaryotes.[35] A core set of genes that function in meiosis is present in both Trichomonas vaginalis and Giardia intestinalis, two organisms previously thought to be asexual.[36][37] Since these two species are descendants of lineages that diverged early from the eukaryotic evolutionary tree, it was inferred that core meiotic genes, and hence sex, were likely present in a common ancestor of all eukaryotes.[36][37] Eukaryotic species once thought to be asexual, such as parasitic protozoa of the genus Leishmania, have been shown to have a sexual cycle.[38] Also, evidence now indicates that amoebae, previously regarded as asexual, are anciently sexual and that the majority of present-day asexual groups likely arose recently and independently.[39]

Classification[edit] Further information: wikispecies:Eukaryota Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes & prokaryotes One hypothesis of eukaryotic relationships. The Opisthokonta group includes both animals (Metazoa) and fungi. Plants (Plantae) are placed in Archaeplastida. A pie chart of described eukaryote species (except for Excavata), together with a tree showing possible relationships between the groups In antiquity, the two lineages of animals and plants were recognized. They were given the taxonomic rank of Kingdom by Linnaeus. Though he included the fungi with plants with some reservations, it was later realized that they are quite distinct and warrant a separate kingdom, the composition of which was not entirely clear until the 1980s.[40] The various single-cell eukaryotes were originally placed with plants or animals when they became known. In 1830, the German biologist Georg A. Goldfuss coined the word protozoa to refer to organisms such as ciliates, and this group was expanded until it encompassed all single-celled eukaryotes, and given their own kingdom, the Protista, by Ernst Haeckel in 1866.[41][42] The eukaryotes thus came to be composed of four kingdoms: Kingdom Protista Kingdom Plantae Kingdom Fungi Kingdom Animalia The protists were understood to be "primitive forms", and thus an evolutionary grade, united by their primitive unicellular nature.[42] The disentanglement of the deep splits in the tree of life only really started with DNA sequencing, leading to a system of domains rather than kingdoms as top level rank being put forward by Carl Woese, uniting all the eukaryote kingdoms under the eukaryote domain.[43] At the same time, work on the protist tree intensified, and is still actively going on today. Several alternative classifications have been forwarded, though there is no consensus in the field. A classification produced in 2005 for the International Society of Protistologists,[44] which reflected the consensus of the time, divided the eukaryotes into six supposedly monophyletic 'supergroups'. However, in the same year (2005), doubts were expressed as to whether some of these supergroups were monophyletic, particularly the Chromalveolata,[45] and a review in 2006 noted the lack of evidence for several of the supposed six supergroups.[46] A revised classification in 2012[1] recognizes five supergroups. Archaeplastida (or Primoplantae) Land plants, green algae, red algae, and glaucophytes SAR supergroup Stramenopiles (brown algae, diatoms, etc.), Alveolata, and Rhizaria (Foraminifera, Radiolaria, and various other amoeboid protozoa). Excavata Various flagellate protozoa Amoebozoa Most lobose amoeboids and slime molds Opisthokonta Animals, fungi, choanoflagellates, etc. There are also smaller groups of eukaryotes whose position is uncertain or seems to fall outside the major groups[47] — in particular, Haptophyta, Cryptophyta, Centrohelida, Telonemia, Picozoa,[48] Apusomonadida, Ancyromonadida, Breviatea, and the genus Collodictyon.[49] Overall, it seems that, although progress has been made, there are still very significant uncertainties in the evolutionary history and classification of eukaryotes. As Roger & Simpson said in 2009 "with the current pace of change in our understanding of the eukaryote tree of life, we should proceed with caution."[50] In an article published in Nature Microbiology in April 2016 the authors, "reinforced once again that the life we see around us – plants, animals, humans and other so-called eukaryotes – represent a tiny percentage of the world's biodiversity."[51] They classified eukaryote "based on the inheritance of their information systems as opposed to lipid or other cellular structures." Jillian F. Banfield of the University of California, Berkeley and fellow scientists used a super computer to generate a diagram of a new tree of life based on DNA from 3000 species including 2,072 known species and 1,011 newly reported microbial organisms, whose DNA they had gathered from diverse environments.[6][52] As the capacity to sequence DNA became easier, Banfield and team were able to do metagenomic sequencing—"sequencing whole communities of organisms at once and picking out the individual groups based on their genes alone."[51] Phylogeny[edit] The rRNA trees constructed during the 1980s and 1990s left most eukaryotes in an unresolved "crown" group (not technically a true crown), which was usually divided by the form of the mitochondrial cristae; see crown eukaryotes. The few groups that lack mitochondria branched separately, and so the absence was believed to be primitive; but this is now considered an artifact of long-branch attraction, and they are known to have lost them secondarily.[53][54] As of 2011[update], there is widespread agreement that the Rhizaria belong with the Stramenopiles and the Alveolata, in a clade dubbed the SAR supergroup, so that Rhizaria is not one of the main eukaryote groups; also that the Amoebozoa and Opisthokonta are each monophyletic and form a clade, often called the unikonts.[55][56][57][58][59] Beyond this, there does not appear to be a consensus. It has been estimated that there may be 75 distinct lineages of eukaryotes.[60] Most of these lineages are protists. The known eukaryote genome sizes vary from 8.2 megabases (Mb) in Babesia bovis to 112,000–220,050 Mb in the dinoflagellate Prorocentrum micans, showing that the genome of the ancestral eukaryote has undergone considerable variation during its evolution.[60] The last common ancestor of all eukaryotes is believed to have been a phagotrophic protist with a nucleus, at least one centriole and cilium, facultatively aerobic mitochondria, sex (meiosis and syngamy), a dormant cyst with a cell wall of chitin and/or cellulose and peroxisomes.[60] Later endosymbiosis led to the spread of plastids in some lineages. Five supergroups[edit] A global tree of eukaryotes from a consensus of phylogenetic evidence (in particular, phylogenomics), rare genomic signatures, and morphological characteristics is presented in Adl et al. 2012[1] and Burki 2014/2016 with the Cryptophyta and picozoa having emerged within the Archaeplastida.[47][61] A similar inclusion of Glaucophyta, Cryptista (and also Haptista), Telonemia is recovered in Karnkowska et al with Rhodophyta/Telonemia as basal Archaeplastida.[62]  Eukaryotes   Diaphoretickes  Archaeplastida Red algae (Rhodophyta) picozoa   Glaucophyta Green plants (Viridiplantae)  Cryptista   Haptista    Telonemia  SAR  Halvaria Stramenopiles Alveolata Rhizaria Discoba Amorphea Amoebozoa Apusomonadida  Opisthokonta  Holomycota (inc. fungi) Holozoa (inc. animals) Hacrobia In some analyses, the Hacrobia group (Haptophyta + Cryptophyta) is placed next to Archaeplastida,[55] but in other ones it is nested inside the Archaeplastida.[63] However, several recent studies have concluded that Haptophyta and Cryptophyta do not form a monophyletic group.[64] The former could be a sister group to the SAR group, the latter cluster with the Archaeplastida (plants in the broad sense).[65] The division of the eukaryotes into two primary clades, bikonts (Archaeplastida + SAR + Excavata) and unikonts (Amoebozoa + Opisthokonta), derived from an ancestral biflagellar organism and an ancestral uniflagellar organism, respectively, had been suggested earlier.[63][66][67] A 2012 study produced a somewhat similar division, although noting that the terms "unikonts" and "bikonts" were not used in the original sense.[48] A highly converged and congruent set of trees appears in Derelle et al (2015), Ren et al (2016), Yang et al (2017) and Cavalier-Smith (2015) including the supplementary information, resulting in a more conservative and consolidated tree. It is combined with some results from Cavalier-Smith for the basal Opimoda.[68][69][70][71][72][73][74] The main remaining controversies are the root, and the exact positioning of the Rhodophyta and the bikonts Rhizaria, Haptista, Cryptista, Picozoa and Telonemia, many of which may be eukaryote-eukaryote hybrids.[75] Archeaplastida developed the Chloroplasts probably by endosymbiosis of an ancestor related to a currently extant cyanobacterium, Gloeomargarita lithophora.[76][77][78] Eukaryotes Diphoda Diaphoretickes Archaeplastida (+ Gloeomargarita lithophora)  Glaucophyta Rhodophyta Viridiplantae Hacrobia Haptista Cryptista SAR Halvaria Stramenopiles Alveolata Rhizaria Discoba Opimoda Metamonada Ancyromonas Malawimonas Podiata CRuMs Diphyllatea, Rigifilida,Mantamonas Amorphea Amoebozoa Obazoa Breviata Apusomonadida Opisthokonta Cavalier-Smith's tree[edit] Thomas Cavalier-Smith 2010,[79] 2013,[80] 2014[81] and 2017[82] places the eukaryotic tree's root between Excavata (with ventral feeding groove supported by a microtubular root) and the grooveless Euglenozoa, and monophyletic Chromista, correlated to a single endosymbyotic event of capturing a red-algae. Eukaryotes Tsukubea Discicristata Euglenozoa Percolozoa Orthokaryota Jakobea Neokaryota Corticata Plantae Glaucophytes Rhodophytes Viridiplantae Chromista  (+ Rhodophyte)  Hacrobia SAR Scotokaryota Metamonada Opimoda Malawimonadea Podiata Ancyromonadida Mantamonadia Diphyllatea Amorphea Amoebozoa Obazoa Breviatea Apusomonadida Opisthokonta

Origin of eukaryotes[edit] The three-domains tree and the Eocyte hypothesis[83] Phylogenetic tree showing a possible relationship between the eukaryotes and other forms of life;[84] eukaryotes are colored red, archaea green and bacteria blue. Fossils[edit] The origin of the eukaryotic cell is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The timing of this series of events is hard to determine; Knoll (2006) suggests they developed approximately 1.6–2.1 billion years ago. Some acritarchs are known from at least 1.65 billion years ago, and the possible alga Grypania has been found as far back as 2.1 billion years ago.[85] The Geosiphon-like fossil fungus Diskagma has been found in paleosols 2.2 billion years old.[86] Organized living structures have been found in the black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, dated at 2.1 billion years old. Eukaryotic life could have evolved at that time.[87] Fossils that are clearly related to modern groups start appearing an estimated 1.2 billion years ago, in the form of a red alga, though recent work suggests the existence of fossilized filamentous algae in the Vindhya basin dating back perhaps to 1.6 to 1.7 billion years ago.[88] Biomarkers suggest that at least stem eukaryotes arose even earlier. The presence of steranes in Australian shales indicates that eukaryotes were present in these rocks dated at 2.7 billion years old.[89][90] Relationship to Archaea[edit] The nuclear DNA and genetic machinery of eukaryotes is more similar to Archaea than Bacteria, leading to a controversial suggestion that eukaryotes should be grouped with Archaea in the clade Neomura. In other respects, such as membrane composition, eukaryotes are similar to Bacteria. Three main explanations for this have been proposed: Eukaryotes resulted from the complete fusion of two or more cells, wherein the cytoplasm formed from a eubacterium, and the nucleus from an archaeon,[91] from a virus,[92][93] or from a pre-cell.[94][95] Eukaryotes developed from Archaea, and acquired their eubacterial characteristics through the endosymbiosis of a proto-mitochondrion of eubacterial origin.[96] Eukaryotes and Archaea developed separately from a modified eubacterium. Diagram of the origin of life with the Eukaryotes appearing early, not derived from Prokaryotes, as proposed by Richard Egel in 2012. This view implies that the UCA was relatively large and complex.[97] Alternative proposals include: The chronocyte hypothesis postulates that a primitive eukaryotic cell was formed by the endosymbiosis of both archaea and bacteria by a third type of cell, termed a chronocyte.[98] The universal common ancestor (UCA) of the current tree of life was a complex organism that survived a mass extinction event rather than an early stage in the evolution of life. Eukaryotes and in particular akaryotes (Bacteria and Archaea) evolved through reductive loss,[99] so that similarities result from differential retention of original features. Assuming no other group is involved, there are three possible phylogenies for the Bacteria, Archaea and Eukaryota in which each is monophyletic. These are labelled 1 to 3 in the table below. The eocyte hypothesis is a modification of hypothesis 2 in which the Archaea are paraphyletic. (The table and the names for the hypotheses are based on Harish and Kurland, 2017.[100]) Alternative hypotheses for the base of the tree of life 1 – Two empires 2 – Three domains 3 – Gupta 4 – Eocyte UCA  Archaea Bacteria Eukaryota UCA  Eukaryota Archaea Bacteria UCA  Eukaryota Bacteria Archaea UCA  Eukaryota Archaea-Crenarchaeota Archaea-Euryarchaeota Bacteria In recent years, most researchers have favoured either the three domains (3D) or the eocyte hypotheses. An rRNA analyses supports the eocyte scenario, apparently with the Eukaryote root in Excavata.[101][79][80][81][82] A cladogram supporting the eocyte hypothesis, positioning eukaryotes within Archaea, based on phylogenomic analyses of the Asgard archaea, is:[102][103] Proteoarchaeota TACK Korarchaeota Crenarchaeota Aigarchaeota Geoarchaeota Thaumarchaeota Bathyarchaeota Asgard Lokiarchaeota Odinarchaeota Thorarchaeota Heimdallarchaeota (+α─Proteobacteria) Eukaryota In this scenario, the Asgard group is seen as a sister taxon of the TACK group, which comprises Crenarchaeota (formerly named eocytes), Thaumarchaeota, and others. In 2017, there has been significant pushback against this scenario, arguing that the eukaryotes did not emerge within the Archaea. Cunha et al. produced analyses supporting the three domains (3D) or Woese hypothesis (2 in the table above) and rejecting the eocyte hypothesis (4 above).[104] Harish and Kurland found strong support for the earlier two empires (2D) or Mayr hypothesis (1 in the table above), based on analyses of the coding sequences of protein domains. They rejected the eocyte hypothesis as the least likely.[105][100] A possible interpretation of their analysis is that the universal common ancestor (UCA) of the current tree of life was a complex organism that survived an evolutionary bottleneck, rather than a simpler organism arising early in the history of life.[99] Endomembrane system and mitochondria[edit] The origins of the endomembrane system and mitochondria are also unclear.[106] The phagotrophic hypothesis proposes that eukaryotic-type membranes lacking a cell wall originated first, with the development of endocytosis, whereas mitochondria were acquired by ingestion as endosymbionts.[107] The syntrophic hypothesis proposes that the proto-eukaryote relied on the proto-mitochondrion for food, and so ultimately grew to surround it. Here the membranes originated after the engulfment of the mitochondrion, in part thanks to mitochondrial genes (the hydrogen hypothesis is one particular version).[108] In a study using genomes to construct supertrees, Pisani et al. (2007) suggest that, along with evidence that there was never a mitochondrion-less eukaryote, eukaryotes evolved from a syntrophy between an archaea closely related to Thermoplasmatales and an α-proteobacterium, likely a symbiosis driven by sulfur or hydrogen. The mitochondrion and its genome is a remnant of the α-proteobacterial endosymbiont.[109] Hypotheses[edit] Different hypotheses have been proposed as to how eukaryotic cells came into existence. These hypotheses can be classified into two distinct classes – autogenous models and chimeric models. Autogenous models[edit] An autogenous model for the origin of eukaryotes. Autogenous models propose that a proto-eukaryotic cell containing a nucleus existed first, and later acquired mitochondria.[110] According to this model, a large prokaryote developed invaginations in its plasma membrane in order to obtain enough surface area to service its cytoplasmic volume. As the invaginations differentiated in function, some became separate compartments—giving rise to the endomembrane system, including the endoplasmic reticulum, golgi apparatus, nuclear membrane, and single membrane structures such as lysosomes.[111] Mitochondria are proposed to come from the endosymbiosis of an aerobic proteobacterium, and it's assumed that all the eukaryotic lineages that did not acquire mitochondria became extinct.[112] Chloroplasts came about from another endosymbiotic event involving cyanobacteria. Since all eukaryotes have mitochondria, but not all have chloroplasts, the serial endosymbiosis theory proposes that mitochondria came first. Chimeric models[edit] Chimeric models claim that two prokaryotic cells existed initially – an archaeon and a bacterium. These cells underwent a merging process, either by a physical fusion or by endosymbiosis, thereby leading to the formation of a eukaryotic cell. Within these chimeric models, some studies further claim that mitochondria originated from a bacterial ancestor while others emphasize the role of endosymbiotic processes behind the origin of mitochondria. Based on the process of mutualistic symbiosis, the hypotheses can be categorized as – the serial endosymbiotic theory (SET),[113][114][115] the hydrogen hypothesis (mostly a process of symbiosis where hydrogen transfer takes place among different species),[116] and the syntrophy hypothesis.[117][118] According to serial endosymbiotic theory (championed by Lynn Margulis), a union between a motile anaerobic bacterium (like Spirochaeta) and a thermoacidophilic crenarchaeon (like Thermoplasma which is sulfidogenic in nature) gave rise to the present day eukaryotes. This union established a motile organism capable of living in the already existing acidic and sulfurous waters. Oxygen is known to cause toxicity to organisms that lack the required metabolic machinery. Thus, the archaeon provided the bacterium with a highly beneficial reduced environment (sulfur and sulfate were reduced to sulfide). In microaerophilic conditions, oxygen was reduced to water thereby creating a mutual benefit platform. The bacterium on the other hand, contributed the necessary fermentation products and electron acceptors along with its motility feature to the archaeon thereby gaining a swimming motility for the organism. From a consortium of bacterial and archaeal DNA originated the nuclear genome of eukaryotic cells. Spirochetes gave rise to the motile features of eukaryotic cells. Endosymbiotic unifications of the ancestors of alpha-proteobacteria and cyanobacteria, led to the origin of mitochondria and plastids respectively. For example, Thiodendron has been known to have originated via an ectosymbiotic process based on a similar syntrophy of sulfur existing between the two types of bacteria – Desulphobacter and Spirochaeta. However, such an association based on motile symbiosis have never been observed practically. Also there is no evidence of archaeans and spirochetes adapting to intense acid-based environments.[119] In the hydrogen hypothesis, the symbiotic linkage of an anaerobic and autotrophic methanogenic archaeon (host) with an alpha-proteobacterium (the symbiont) gave rise to the eukaryotes. The host utilized hydrogen (H2) and carbon dioxide (CO2) to produce methane while the symbiont, capable of aerobic respiration, expelled H2 and CO2 as byproducts of anaerobic fermentation process. The host's methanogenic environment worked as a sink for H2, which resulted in heightened bacterial fermentation. Endosymbiotic gene transfer (EGT) acted as a catalyst for the host to acquire the symbionts' carbohydrate metabolism and turn heterotrophic in nature. Subsequently, the host's methane forming capability was lost. Thus, the origins of the heterotrophic organelle (symbiont) are identical to the origins of the eukaryotic lineage. In this hypothesis, the presence of H2 represents the selective force that forged eukaryotes out of prokaryotes.[citation needed] The syntrophy hypothesis was developed in contrast to the hydrogen hypothesis and proposes the existence of two symbiotic events. According to this theory, the origin of eukaryotic cells was based on metabolic symbiosis (syntrophy) between a methanogenic archaeon and a delta-proteobacterium. This syntrophic symbiosis was initially facilitated by H2 transfer between different species under anaerobic environments. In earlier stages, an alpha-proteobacterium became a member of this integration, and later developed into the mitochondrion. Gene transfer from a delta-proteobacterium to an archaeon led to the methanogenic archaeon developing into a nucleus. The archaeon constituted the genetic apparatus, while the delta-proteobacterium contributed towards the cytoplasmic features. This theory incorporates two selective forces at the time of nucleus evolution – (a) presence of metabolic partitioning to avoid the harmful effects of the co-existence of anabolic and catabolic cellular pathways, and (b) prevention of abnormal protein biosynthesis due to a vast spread of introns in the archaeal genes after acquiring the mitochondrion and losing methanogenesis.[citation needed]

See also[edit] Biology portal Book: Eukaryote Evolution of sexual reproduction List of sequenced eukaryotic genomes Parikaryote Prokaryote Thaumarchaeota Vault (organelle)

References[edit] ^ a b c Adl, Sina M.; et al. (September 2012). "The revised classification of eukaryotes" (PDF). Journal of Eukaryotic Microbiology. 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. PMC 3483872 . PMID 23020233. Archived from the original (PDF) on 16 June 2016.  ^ Youngson, Robert M. (2006). Collins Dictionary of Human Biology. Glasgow: HarperCollins. ISBN 0-00-722134-7.  ^ Nelson, David L.; Cox, Michael M. (2005). Lehninger Principles of Biochemistry (4th ed.). New York: W.H. Freeman. ISBN 0-7167-4339-6.  ^ Martin, E.A., ed. (1983). Macmillan Dictionary of Life Sciences (2nd ed.). London: Macmillan Press. ISBN 0-333-34867-2.  ^ "eukaryotic". Online Etymology Dictionary.  ^ a b Zimmer, Carl (11 April 2016). "Scientists Unveil New 'Tree of Life'". The New York Times. Retrieved 2016-04-11.  ^ a b Whitman W; Coleman D; Wiebe W (1998). "Prokaryotes: The unseen majority" (PDF). Proc. Natl. Acad. Sci. USA. 95 (12): 6578–6583. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863 . PMID 9618454.  ^ a b Martin, William F.; Garg, Sriram; Zimorski, Verena (26 September 2015). "Endosymbiotic theories for eukaryote origin". Philos Trans Royal Soc B. 370 (1678): 20140330. doi:10.1098/rstb.2014.0330. PMC 4571569 . PMID 26323761.  ^ a b Sapp, Jan (June 2005). "The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology". Microbiology and Molecular Biology Reviews. 69 (2): 292–305. doi:10.1128/MMBR.69.2.292-305.2005. PMC 1197417 . PMID 15944457.  ^ Lynn Sagan (1967). "On the origin of mitosing cells". J Theor Biol. 14 (3): 255–274. doi:10.1016/0022-5193(67)90079-3. PMID 11541392.  ^ "Microorganisms and the origin of the eukaryotic cell" (PDF). Retrieved 2017-10-24.  ^ Linka, Marc; Weber, Andreas P.M. (2011). "Evolutionary Integration of Chloroplast Metabolism with the Metabolic Networks of the Cells". In Burnap, Robert L. & Vermaas, Willem F.J. Functional Genomics and Evolution of Photosynthetic Systems. Springer. p. 215. ISBN 978-9400715332. CS1 maint: Uses editors parameter (link) ^ Marsh, Mark (2001). Endocytosis. Oxford University Press. p. vii. ISBN 978-0-19-963851-2.  ^ Hetzer, Mertin (February 3, 2010). "The Nuclear Envelope". Cold Spring Harbor Perspectives in Biology. 2 (3): a000539. doi:10.1101/cshperspect.a000539. PMC 2829960 . PMID 20300205.  ^ "Endoplasmic Reticulum (Rough and Smooth)". British Society for Cell Biology. Retrieved 12 November 2017.  ^ "Golgi Apparatus". British Society for Cell Biology. Retrieved 12 November 2017.  ^ "Lysosome". British Society for Cell Biology. Retrieved 12 November 2017.  ^ "Re: Are there eukaryotic cells without mitochondria?". 1 May 2006.  ^ Karnkowska, Anna; Vacek, Vojtěch; Zubáčová, Zuzana; Treitli, Sebastian C.; Petrželková, Romana; Eme, Laura; Novák, Lukáš; Žárský, Vojtěch; Barlow, Lael D.; Herman, Emily K.; Soukal, Petr; Hroudová, Miluše; Doležal, Pavel; Stairs, Courtney W.; Roger, Andrew J.; Eliáš, Marek; Dacks, Joel B.; Vlček, Čestmír; Hampl, Vladimír (2016). "A Eukaryote without a Mitochondrial Organelle". Current Biology. 26: 1274–1284. doi:10.1016/j.cub.2016.03.053.  ^ Davis, Josh L. (13 May 2016). "Scientists Shocked To Discover Eukaryote With NO Mitochondria". IFL Science. Retrieved 2016-05-13.  ^ Sato, N. (2006). "Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids". In R.R. Wise; J.K. Hoober. The Structure and Function of Plastids. 23. Springer Netherlands. pp. 75–102. doi:10.1007/978-1-4020-4061-0_4. ISBN 978-1-4020-4060-3.  ^ Margulis, L. (1998). Symbiotic planet: a new look at evolution. New York: Basic Books. ISBN 978-0-465-07271-2. OCLC 39700477. [page needed] ^ Lynn Margulis, Heather I. McKhann & Lorraine Olendzenski (ed.), Illustrated Glossary of Protoctista, Jones and Bartlett Publishers, Boston, 1993, p.xviii. ISBN 0-86720-081-2 ^ Vorobjev, I. A.; Nadezhdina, E. S. (1987). "The Centrosome and Its Role in the Organization of Microtubules". International Review of Cytology. International Review of Cytology. 106: 227–293. doi:10.1016/S0074-7696(08)61714-3. ISBN 978-0-12-364506-7. PMID 3294718.  ^ Howland, John L. (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. pp. 69–71. ISBN 0-19-511183-4.  ^ Fry, Stephen C. (1989). "The Structure and Functions of Xyloglucan". Journal of Experimental Botany. 40 (1): 1–11. doi:10.1093/jxb/40.1.1.  ^ Raven, J. A. (July 1987). "The role of vacuoles". New Phytologist. 106: 357–422. doi:10.1111/j.1469-8137.1987.tb00149.x.  ^ Oparka, K. (2005). Plasmodesmata. Oxford, UK: Blackwell Publishing.  ^ Raven, P.H.; Evert, R.F.; Eichorm, S.E. (1999). Biology of Plants. New York: W.H. Freeman.  ^ Silflow, C.D.; Lefebvre, P.A. (December 2001). "Assembly and Motility of Eukaryotic Cilia and Flagella. Lessons from Chlamydomonas reinhardtii". Plant Physiology. 127: 1500–1507. doi:10.1104/pp.010807. PMC 1540183 . PMID 11743094.  ^ Deacon J (2005). Fungal Biology. Cambridge, Massachusetts: Blackwell Publishers. p. 4 and passim. ISBN 1-4051-3066-0.  ^ Patrick J. Keeling (2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–1493. doi:10.3732/ajb.91.10.1481. PMID 21652304.  ^ David J. Patterson. "Amoebae: Protists Which Move and Feed Using Pseudopodia". Tree of Life Web Project. Retrieved 12 November 2017.  ^ Lane, Nick (2011). "Energetics and genetics across the prokaryote-eukaryote divide". Biology Direct. 6 (1): 35. doi:10.1186/1745-6150-6-35.  ^ Dacks J, Roger AJ (June 1999). "The first sexual lineage and the relevance of facultative sex". J. Mol. Evol. 48 (6): 779–83. doi:10.1007/PL00013156. PMID 10229582.  ^ a b Ramesh MA, Malik SB, Logsdon JM (January 2005). "A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis". Curr. Biol. 15 (2): 185–91. doi:10.1016/j.cub.2005.01.003. PMID 15668177.  ^ a b Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM (2008). Hahn MW, ed. "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLoS ONE. 3 (8): e2879. Bibcode:2008PLoSO...3.2879M. doi:10.1371/journal.pone.0002879. PMC 2488364 . PMID 18663385.  ^ Akopyants NS, Kimblin N, Secundino N, et al. (April 2009). "Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector". Science. 324 (5924): 265–8. Bibcode:2009Sci...324..265A. doi:10.1126/science.1169464. PMC 2729066 . PMID 19359589.  ^ Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E (July 2011). "The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms". Proc. Biol. Sci. 278 (1715): 2081–90. doi:10.1098/rspb.2011.0289. PMC 3107637 . PMID 21429931.  ^ Moore RT. (1980). "Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts". Botanica Marina. 23: 361–73.  ^ Scamardella, J. M. (1999). "Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista" (PDF). International Microbiology. 2: 207–221. Archived from the original (PDF) on 14 June 2011.  ^ a b Rothschild LJ (1989). "Protozoa, Protista, Protoctista: what's in a name?" (PDF). J Hist Biol. 22 (2): 277–305. doi:10.1007/BF00139515. PMID 11542176.  ^ Woese C, Kandler O, Wheelis M (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc Natl Acad Sci USA. 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159 . PMID 2112744. Retrieved 2010-02-11.  ^ Adl SM; Simpson AG; Farmer MA; et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". J. Eukaryot. Microbiol. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873.  ^ Harper, J. T.; Waanders, E.; Keeling, P. J. (2005). "On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes" (PDF). Int. J. System. Evol. Microbiol. 55 (1): 487–496. doi:10.1099/ijs.0.63216-0. PMID 15653923. Archived from the original (PDF) on 17 December 2008.  ^ Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA (December 2006). "Evaluating Support for the Current Classification of Eukaryotic Diversity". PLoS Genet. 2 (12): e220. doi:10.1371/journal.pgen.0020220. PMC 1713255 . PMID 17194223.  ^ a b Burki, F. (2014). "The eukaryotic tree of life from a global phylogenomic perspective". Cold Spring Harbor Perspectives in Biology. 6: 1–17. doi:10.1101/cshperspect.a016147.  ^ a b Zhao, Sen; Burki, Fabien; Bråte, Jon; Keeling, Patrick J.; Klaveness, Dag; Shalchian-Tabrizi, Kamran (2012). "Collodictyon—An Ancient Lineage in the Tree of Eukaryotes". Molecular Biology and Evolution. 29 (6): 1557–68. doi:10.1093/molbev/mss001. PMC 3351787 . PMID 22319147.  ^ Romari; Vaulot (2004). "Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences". Limnol Oceanogr. 49: 784–98. doi:10.4319/lo.2004.49.3.0784.  ^ Roger AJ, Simpson AG (2009). "Evolution: Revisiting the Root of the Eukaryote Tree". Current Biology. 19 (4): R165–7. doi:10.1016/j.cub.2008.12.032. PMID 19243692.  ^ a b Sanders, Robert (11 April 2016). "Wealth of unsuspected new microbes expands tree of life". Berkeley News. Retrieved 2016-04-11.  ^ Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W.; Amano, Yuki; Ise, Kotaro; Suzuki, Yohey; Dudek, Natasha; Relman, David A.; Finstad, Kari M.; Amundson, Ronald; Thomas, Brian C.; Banfield, Jillian F. (11 April 2016). "A new view of the tree of life". Nature Microbiology. 1: 16048. doi:10.1038/nmicrobiol.2016.48. PMID 27572647.  ^ Tovar J, Fischer A, Clark CG (1999). "The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica". Mol. Microbiol. 32 (5): 1013–21. doi:10.1046/j.1365-2958.1999.01414.x. PMID 10361303.  ^ Boxma B; de Graaf RM; van der Staay GW; Huynen, Theo A.; Hackstein, Guenola; Gabaldón, Toni; Van Hoek, Angela H. A. M.; Moon-Van Der Staay, Seung Yeo; Koopman, Werner J. H.; van Hellemond, Jaap J.; Tielens, Aloysius G. M.; Friedrich, T; Veenhuis, M (2005). "An anaerobic mitochondrion that produces hydrogen". Nature. 434 (7029): 74–9. Bibcode:2005Natur.434...74B. doi:10.1038/nature03343. PMID 15744302.  ^ a b Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007). Butler G, ed. "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLoS ONE. 2 (8): e790. Bibcode:2007PLoSO...2..790B. doi:10.1371/journal.pone.0000790. PMC 1949142 . PMID 17726520.  ^ Burki, Fabien; Shalchian-Tabrizi, Kamran; Pawlowski, Jan (2008). "Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes". Biology Letters. 4 (4): 366–369. doi:10.1098/rsbl.2008.0224. PMC 2610160 . PMID 18522922.  ^ Burki, F.; Inagaki, Y.; Brate, J.; Archibald, J. M.; Keeling, P. J.; Cavalier-Smith, T.; Sakaguchi, M.; Hashimoto, T.; Horak, A. (2009). "Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates". Genome Biology and Evolution. 1: 231–8. doi:10.1093/gbe/evp022. PMC 2817417 . PMID 20333193.  ^ Hackett, J.D.; Yoon, H.S.; Li, S.; Reyes-Prieto, A.; Rummele, S.E.; Bhattacharya, D. (2007). "Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates". Mol. Biol. Evol. 24 (8): 1702–13. doi:10.1093/molbev/msm089. PMID 17488740.  ^ Cavalier-Smith, Thomas (2009). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–5. doi:10.1098/rsbl.2009.0948. PMC 2880060 . PMID 20031978.  ^ a b c Jagus, R; Bachvaroff, TR; Joshi, B; Place, AR (2012). "Diversity of eukaryotic translational initiation factor eIF4E in protists". Comp Funct Genomics. 2012: 134839. doi:10.1155/2012/134839.  ^ Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (27 January 2016). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proc. R. Soc. B. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. PMID 26817772.  ^ Karnkowska, Anna; Vacek, Vojtěch; Zubáčová, Zuzana; Treitli, Sebastian C.; Petrželková, Romana; Eme, Laura; Novák, Lukáš; Žárský, Vojtěch; Barlow, Lael D. "A Eukaryote without a Mitochondrial Organelle". Current Biology. 26 (10): 1274–1284. doi:10.1016/j.cub.2016.03.053.  ^ a b Kim, E.; Graham, L.E. & Graham, Linda E. (2008). Redfield, Rosemary Jeanne, ed. "EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata". PLoS ONE. 3 (7): e2621. Bibcode:2008PLoSO...3.2621K. doi:10.1371/journal.pone.0002621. PMC 2440802 . PMID 18612431.  ^ Baurain, Denis; Brinkmann, Henner; Petersen, Jörn; Rodríguez-Ezpeleta, Naiara; Stechmann, Alexandra; Demoulin, Vincent; Roger, Andrew J.; Burger, Gertraud; Lang, B. Franz & Philippe, Hervé (July 2010). "Phylogenomic Evidence for Separate Acquisition of Plastids in Cryptophytes, Haptophytes, and Stramenopiles". Molecular Biology and Evolution. 27 (7): 1698–1709. doi:10.1093/molbev/msq059. PMID 20194427.  ^ Burki, F.; Okamoto, N.; Pombert, J.F. & Keeling, P.J. (7 June 2012). "The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins". Proc. Biol. Sci. 279: 2246–54. doi:10.1098/rspb.2011.2301. PMC 3321700 . PMID 22298847.  ^ Cavalier-Smith, T (2006). "Protist phylogeny and the high-level classification of Protozoa". European Journal of Protistology. 39 (4): 338–348. doi:10.1078/0932-4739-00002.  ^ Burki F, Pawlowski J (October 2006). "Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts". Mol. Biol. Evol. 23 (10): 1922–30. doi:10.1093/molbev/msl055. PMID 16829542.  ^ Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David; Ma, Hong; Zhou, Xiaofan (2016-09-01). "Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes". Genome Biology and Evolution. 8 (9): 2683–2701. doi:10.1093/gbe/evw196.  ^ Cavalier-Smith, Thomas (5 September 2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma: 1–61. doi:10.1007/s00709-017-1147-3.  ^ Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek (2015-02-17). "Bacterial proteins pinpoint a single eukaryotic root". Proceedings of the National Academy of Sciences. 112 (7): E693–E699. doi:10.1073/pnas.1420657112. PMID 25646484.  ^ Yang, Jiwon; Harding, Tommy; Kamikawa, Ryoma; Simpson, Alastair G. B.; Roger, Andrew J. (1 May 2017). "Mitochondrial Genome Evolution and a Novel RNA Editing System in Deep-Branching Heteroloboseids". Genome Biology and Evolution. 9 (5): 1161–1174. doi:10.1093/gbe/evx086.  ^ Cavalier-Smith, Thomas; Fiore-Donno, Anna Maria; Chao, Ema; Kudryavtsev, Alexander; Berney, Cédric; Snell, Elizabeth A.; Lewis, Rhodri. "Multigene phylogeny resolves deep branching of Amoebozoa". Molecular Phylogenetics and Evolution. 83: 293–304. doi:10.1016/j.ympev.2014.08.011.  ^ Brown, Matthew W.; Heiss, Aaron; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K.; Shiratori, Takashi; Ishida, Ken; Hashimoto, Tetsuo (2017-12-03). "Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group". bioRxiv: 227884. doi:10.1101/227884.  ^ Torruella, Guifré; Mendoza, Alex de; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Campo, Javier del; Eme, Laura; Pérez-Cordón, Gregorio; Whipps, Christopher M. "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi:10.1016/j.cub.2015.07.053.  ^ López-García, Purificación; Eme, Laura; Moreira, David. "Symbiosis in eukaryotic evolution". Journal of Theoretical Biology. 434: 20–33. doi:10.1016/j.jtbi.2017.02.031.  ^ Ponce-Toledo, Rafael I.; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Benzerara, Karim; Moreira, David. "An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids". Current Biology. 27 (3): 386–391. doi:10.1016/j.cub.2016.11.056.  ^ de Vries, Jan; Archibald, John M. "Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?". Current Biology. 27 (3): R103–R105. doi:10.1016/j.cub.2016.12.006.  ^ López-García, Purificación; Eme, Laura; Moreira, David. "Symbiosis in eukaryotic evolution". Journal of Theoretical Biology. 434: 20–33. doi:10.1016/j.jtbi.2017.02.031.  ^ a b Cavalier-Smith, T (2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. PMC 2880060 . PMID 20031978.  ^ a b Cavalier-Smith, T (2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European journal of protistology. 49 (2): 115–178. doi:10.1016/j.ejop.2012.06.001. PMID 23085100.  ^ a b Cavalier-Smith, T.; Chao, E. E.; Snell, E. A.; Berney, C.; Fiore-Donno, A. M.; Lewis, R. (2014). "Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa". Molecular Phylogenetics & Evolution. 81: 71–85. doi:10.1016/j.ympev.2014.08.012. PMID 25152275.  ^ a b Cavalier-Smith, Thomas (5 September 2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma: 1–61. doi:10.1007/s00709-017-1147-3.  ^ Cox, C. J.; Foster, P. G.; Hirt, R. P.; Harris, S. R.; Embley, T. M. (2008). "The archaebacterial origin of eukaryotes". Proc Natl Acad Sci USA. 105 (51): 20356–61. Bibcode:2008PNAS..10520356C. doi:10.1073/pnas.0810647105. PMC 2629343 . PMID 19073919.  ^ Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006). "Toward automatic reconstruction of a highly resolved tree of life". Science. 311 (5765): 1283–7. Bibcode:2006Sci...311.1283C. doi:10.1126/science.1123061. PMID 16513982.  ^ Knoll, Andrew H.; Javaux, E.J; Hewitt, D.; Cohen, P. (29 June 2006). "Eukaryotic organisms in Proterozoic oceans". Philosophical Transactions of the Royal Society B. 361 (1470): 1023–38. doi:10.1098/rstb.2006.1843. PMC 1578724 . PMID 16754612.  ^ Retallack, G.J.; Krull, E.S.; Thackray, G.D. & Parkinson, D. H. (2013). "Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa". Precambrian Research. 235: 71–87. doi:10.1016/j.precamres.2013.05.015.  ^ Albani, A. E.; Bengtson, S.; Canfield, D. E.; Bekker, A.; MacChiarelli, R.; Mazurier, A.; Hammarlund, E. U.; Boulvais, P.; Dupuy, J. J.; Fontaine, C.; Fürsich, F. T.; Gauthier-Lafaye, F. O.; Janvier, P.; Javaux, E.; Ossa, F. O.; Pierson-Wickmann, A. C.; Riboulleau, A.; Sardini, P.; Vachard, D.; Whitehouse, M.; Meunier, A. (2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago". Nature. 466 (7302): 100–104. Bibcode:2010Natur.466..100A. doi:10.1038/nature09166. PMID 20596019.  ^ Bengtson, S; Belivanova, V; Rasmussen, B; Whitehouse, M (2009). "The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older". Proceedings of the National Academy of Sciences of the United States of America. 106 (19): 7729–34. Bibcode:2009PNAS..106.7729B. doi:10.1073/pnas.0812460106. PMC 2683128 . PMID 19416859.  ^ Brocks JJ, Logan GA, Buick R, Summons RE (August 1999). "Archean molecular fossils and the early rise of eukaryotes". Science. 285 (5430): 1033–6. doi:10.1126/science.285.5430.1033. PMID 10446042.  ^ Ward P (9 Feb 2008). "Mass extinctions: the microbes strike back". New Scientist: 40–3.  ^ Martin W (December 2005). "Archaebacteria (Archaea) and the origin of the eukaryotic nucleus". Curr. Opin. Microbiol. 8 (6): 630–7. doi:10.1016/j.mib.2005.10.004. PMID 16242992.  ^ Takemura M (May 2001). "Poxviruses and the origin of the eukaryotic nucleus". J. Mol. Evol. 52 (5): 419–25. doi:10.1007/s002390010171. PMID 11443345.  ^ Bell PJ (September 2001). "Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?". J. Mol. Evol. 53 (3): 251–6. doi:10.1007/s002390010215. PMID 11523012.  ^ Wächtershäuser G (January 2003). "From pre-cells to Eukarya—a tale of two lipids". Mol. Microbiol. 47 (1): 13–22. doi:10.1046/j.1365-2958.2003.03267.x. PMID 12492850.  ^ Wächtershäuser G (October 2006). "From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya". Philosophical Transactions of the Royal Society B. 361 (1474): 1787–1808. doi:10.1098/rstb.2006.1904. PMC 1664677 . PMID 17008219.  ^ Lane, Nick (2016). The Vital Question: Why is Life the Way it is? (paperback ed.). Profile Books. pp. 157–191. ISBN 978-1-781-25037-2.  ^ Egel, Richard (March 2012). "Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life". Life. 2 (1): 170–212. doi:10.3390/life2010170.  ^ Hartman H.; Fedorov A. (5 February 2002). "The origin of the eukaryotic cell: A genomic investigation". PNAS. 99 (3): 1420–1425. Bibcode:2002PNAS...99.1420H. doi:10.1073/pnas.032658599. PMC 122206 . PMID 11805300.  ^ a b Harish, Ajith; Tunlid, Anders & Kurland, Charles G. (2013), "Rooted phylogeny of the three superkingdoms", Biochimie, 95 (8): 1593–1604, doi:10.1016/j.biochi.2013.04.016  ^ a b Harish, Ajith; Kurland, Charles G. "Akaryotes and Eukaryotes are independent descendants of a universal common ancestor". Biochimie. 138: 168–183. doi:10.1016/j.biochi.2017.04.013.  ^ Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W.; Amano, Yuki (2016-04-11). "A new view of the tree of life". Nature Microbiology. 1 (5). doi:10.1038/nmicrobiol.2016.48.  ^ Spang, Anja; Saw, Jimmy H.; Jørgensen, Steffen L.; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E.; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J. G. (2015). "Complex archaea that bridge the gap between prokaryotes and eukaryotes". Nature. 521 (7551): 173–179. doi:10.1038/nature14447.  ^ Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F.; Saw, Jimmy H.; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W.; Anantharaman, Karthik; Starnawski, Piotr; Kjeldsen, Kasper U.; Stott, Matthew B.; Nunoura, Takuro; Banfield, Jillian F.; Schramm, Andreas; Baker, Brett J.; Spang, Anja; Ettema, Thijs J. G. (2017). "Asgard archaea illuminate the origin of eukaryotic cellular complexity". Nature. 541 (7637): 353–358. doi:10.1038/nature21031.  ^ Cunha, Violette Da; Gaia, Morgan; Gadelle, Daniele; Nasir, Arshan; Forterre, Patrick (12 June 2017). "Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes". PLOS Genetics. 13 (6): e1006810. doi:10.1371/journal.pgen.1006810.  ^ Harish, Ajith & Kurland, Charles G. (2017), "Empirical genome evolution models root the tree of life", Biochimie, 138: 137–155, doi:10.1016/j.biochi.2017.04.014  ^ Jékely G (2007). "Origin of eukaryotic endomembranes: a critical evaluation of different model scenarios". Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. 607: 38–51. doi:10.1007/978-0-387-74021-8_3. ISBN 978-0-387-74020-1. PMID 17977457.  ^ Cavalier-Smith T (1 March 2002). "The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa". Int. J. Syst. Evol. Microbiol. 52 (Pt 2): 297–354. doi:10.1099/00207713-52-2-297. PMID 11931142.  ^ Martin W, Müller M (March 1998). "The hydrogen hypothesis for the first eukaryote". Nature. 392 (6671): 37–41. Bibcode:1998Natur.392...37M. doi:10.1038/32096. PMID 9510246.  ^ Pisani D, Cotton JA, McInerney JO (2007). "Supertrees disentangle the chimerical origin of eukaryotic genomes". Mol Biol Evol. 24 (8): 1752–60. doi:10.1093/molbev/msm095. PMID 17504772.  ^ Latorre, A.; Durban, A.; Moya, A.; Pereto, J. (2011). "21". The role of symbiosis in eukaryotic evolution. Origins and evolution of life – An astrobiological perspective. pp. 326–339.  ^ Ayala, J. (1 April 1994). "Transport and internal organization of membranes: vesicles, membrane networks and GTP-binding proteins". Journal of Cell Science. 107 (107): 753–763. PMID 8056835.  ^ Martin, William F. "The Origin of Mitochondria". Scitable. Nature education. Retrieved 2013-03-27.  ^ Margulis, L. (1970). Origin of Eukaryotic Cells. New Haven, London: Yale University Press.  ^ Margulis, L. (1993). Symbiosis in Cell Evolution. New York: W. H. Freeman.  ^ Margulis, L.; Dolan, M.F.; Guerrero, R. (20 June 2000). "The chimeric eukaryote:origin of the nucleus from the Karyomastigont in Amitochondriate protists". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 6954–6959. Bibcode:2000PNAS...97.6954M. doi:10.1073/pnas.97.13.6954. PMC 34369 . PMID 10860956.  ^ Martin, W.; Müller, M. (1998). "The hydrogen hypothesis for the first eukaryote". Nature. 392 (6671): 37–41. Bibcode:1998Natur.392...37M. doi:10.1038/32096. PMID 9510246.  ^ Moreira, D.; Lopez-Garcia, P. (November 1998). "Symbiosis between methanogenic Archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis". Journal of Molecular Evolution. 47 (5): 517–530. doi:10.1007/PL00006408. PMID 9797402.  ^ Lopez-Garcia, P.; Moreira, D. (2006). "Selective forces for the origin of the eukaryotic nucleus". BioEssays. 28 (5): 525–533. doi:10.1002/bies.20413. PMID 16615090.  ^ Latorre, A.; Durban, A.; Moya, A.; Pereto, J. (2011). "The role of symbiosis in eukaryotic evolution". In Gargaud, Muriel; López-Garcìa, Purificación; Martin, Hervé. Origins and Evolution of Life: An Astrobiological Perspective. Cambridge: Cambridge University Press. pp. 326–339. ISBN 978-0-521-76131-4.   This article incorporates public domain material from the NCBI document "Science Primer".[dead link]

External links[edit] Wikispecies has information related to Eukaryota Eukaryotes (Tree of Life web site) Eukaryote at the Encyclopedia of Life v t e Eukaryota Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Diaphoretickes Archaeplastida Glaucophyta Rhodophyta Viridiplantae Plantae s.s. Chlorophyta Streptophyta Cryptista Corbihelia Cryptophyta Haptista Centroheliozoa Haptophyta SAR Halvaria Alveolata Ciliates Miozoa Acavomonadia Colponemidia Myzozoa Stramenopiles (heterokonts) Bicosoecea Developea Hyphochytrea Ochrophyta Peronosporomycota Pirsoniomycota Placidozoa Platysulcea Sagenista Rhizaria Filosa Phytomyxea Retaria Ectoreta Marimyxia Vampyrellidea Incertae sedis Kamera lens Excavata Ancyromonadida Malawimonadea Metamonada (Anaeromonada, Trichozoa) Discoba Jakobea Tsukubea Discicristata Euglenozoa Percolozoa Podiata Amorphea Amoebozoa Conosa (Archamoebae, Semiconosia) Lobosa (Cutosea, Discosea, Tubulinea) Obazoa Apusomonadida Breviatea Opisthokonta Holomycota Cristidiscoidea Opisthosporidia Aphelida Cryptomycota Microsporidia True fungi Holozoa Choanoflagellates Filasterea Metazoa or Animals Teretosporea Mesomycetozoea Corallochytrea Varisulca (paraphyletic) Diphyllatea Discocelida Mantamonadida Micronucleariida Rigifilida Incertae sedis Ancoracysta twista Parakaryon myojinensis †Acritarcha †Charnia †Gakarusia †Galaxiopsis †Grypania †Leptoteichos Major kingdoms are underlined. See also: protist. Sources and alternative views: Wikispecies. v t e Excavata Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Discoba Discicristata Euglenozoa Postgaardia Postgaardea Bihospitida Bihospitidae Postgaardida Calkinsiidae Postgaardidae Glycomonada Diplonemea Diplonemida Diplonemidae Hemistasiidae Kinetoplastea Bordnamonadida Trypanophidida Prokinetoplastida Neobodonida Parabodonida Bodonida Trypanosomatida Euglenida Entosiphonea Entosiphonida Entosiphonidae Stavomonadea Heterostavida Serpenomonadidae Decastavida Decastavidae Keelungiidae Petalomonadida Sphenomonadidae Petalomonadidae Ploeotarea Ploeotiida Lentomonadidae Ploeotiidae Peranemea Peranemida Pseudoperanemataceae Anisonemida Anisonemidae Natomonadida Neometanemidae Distigmidae Astasiidae Acroglissida Teloproctidae Euglenophyceae Rapazida Rapazidae Eutreptiales Eutreptiaceae Euglenales Euglenomorphaceae Phacaceae Euglenaceae Percolozoa Pharyngomonadidea Pharyngomonadida Pharyngomonadidae Heterolobosea Lyromonadida Plaesiobystridae Gruberellidae Psalteriomonadidae Acrasida Acrasidae Guttulinidae Schizopyrenida Naegleriidae Vahlkampfiidae Neovahlkampfiidae Paravahlkampfiidae Euhyperamoebidae Percolatea Percolomonas Stephanopogon Jakobea Jakobida Andaluciidae Stygiellidae Moramonadidae Jakobidae Histionidae Tsukubea Tsukubamonadida Tsukubamonadidae Loukozoa Metamonad Trichozoa Parabasalia Chilomitea Chilomitida Chilomitidae Trichonymphea Lophomonadida Lophomonadidae Trichonymphida Hoplonymphidae Spirotrichosomidae Staurojoeninidae Teranymphidae Trichonymphidae Trichomonadea Trichomonadida Hypotrichomonadidae Tricercomitidae Hexamastigidae Honigbergiellidae Trichomonadidae Trichocovinida Trichocovinidae Tritrichomonadida Dientamoebidae Monocercomonadidae Simplicimonadidae Tritrichomonadidae Spirotrichonymphida Spirotrichonymphidae Cristamonadida Calonymphidae Devescovinidae Fornicata Eopharingea Caviomonadidae Diplomonadida Giardiidae Octomitidae Spironucleidae Hexamitidae Retortamonadida Retortamonadidae Carpediemonadea Carpediemonadida Carpediemonadidae Other Kipferliidae Dysnectida Dysnectidae Chilomastigida Chilomastigidae Anaeromonada Anaeromonadea Paratrimastigidae Trimastigida Trimastigidae Oxymonadida Polymastigidae Saccinobaculidae Pyrsonymphidae Streblomastigidae Oxymonadidae Neolouka Malawimonadea Malawimonadida Malawimonadidae Ancyromonadida Ancyromonadida Ancyromonadida v t e Classification of Archaeplastida / Plantae sensu lato Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Rhodophyta (red algae) Cyanidiophyceae Porphyridiophyceae Compsopogonophyceae Stylonematophyceae Rhodellophyceae Bangiophyceae Florideophyceae Glaucocystophyta (glaucophytes) Glaucocystophyceae Glaucocystis Cyanophora Gloeochaete Viridiplantae (green algae & land plants) Chlorophyta Palmophyllales Nephroselmidophyceae Prasinophyceae Pseudoscourfieldiales Pyramimonadophyceae Scourfieldiales Pedinophyceae Chlorodendrophyceae UTC clade Ulvophyceae Trebouxiophyceae Chlorophyceae Streptophyta (charophytes, & land plants) Mesostigmatophyceae Chlorokybophyceae Klebsormidiophyceae Phragmo- plastophyta Charophyceae Coleochaetophyceae Zygnematophyceae Embryophyta (land plants) Bryophytes (non-vascular) Marchantiophyta Anthocerotophyta Bryophyta "Moss" †Horneophytopsida Tracheophyta (vascular) Lycopodiophyta (microphylls) †Zosterophyllopsida †Sawdoniales Isoetopsida Lycopodiopsida Euphyllophyta (megaphylls) Moniliformopses (ferns) †Cladoxylopsida †Stauropteridales †Zygopteridales Equisetopsida Psilotopsida Marattiopsida Filicopsida Spermatophyta (seed plants) †Seed ferns Gymnosperms Gnetopsida Pinopsida Cycadopsida Ginkgoopsida Angiosperms or flowering plants Amborellales Nymphaeales Austrobaileyales Magnoliids Monocots Eudicots Other †Trimerophytopsida †Progymnosperm Other †Rhyniopsida † = extinct. See also the list of plant orders. v t e Eukaryota: Hacrobia Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Cryptista Corbihelia Endohelea Microhelida Microhelidae Heliomonadida Heliomonadidae Picomonadea Picomonadida Picomonas Telonemea Telonemida Telonemidae Cryptophyta Palpitea Palpitomonadida Palpitomonas Katablepharidea Katablepharida Katablepharidae Goniomonadea Goniomonadida Goniomonas Cryptophyceae Tetragonidiales Tetragonidiaceae Cryptomonadales Cryptomonadaceae GPTgc (Plagioselmis) other (Cryptomonas/Chilomonas/Goniomonas) Hemiselmidaceae CKHgc (Hemiselmis) Pyrenomonadales Chroomonadaceae CKHgc (Chroomonas, Komma) other (Falcomonas) Geminigeraceae GHgc (Guillardia, Hanusia) GPTgc (Geminigera, Teleaulax) other (Proteomonas) Pyrenomonadaceae RRSgc (Pyrenomonas, Rhinomonas, Rhodomonas, Storeatula) Haptista Centroheliozoa Centrohelea Pterocystida Choanocystidae Oxnerellidae Heterophryidae Pterocystidae Acanthocystida Marophryidae Raphidiophryidae Acanthocystidae Haptophyta Rappephyceae Rappemonadales Rappemonas Pavlovophyceae Pavlovales Pavlovaceae Prymnesiophyceae Coccolithales (Pleurochrysis, Coccolithus) Prymnesiales (Chrysochromulina, Prymnesium) Isochrysidales (Chrysotila, Dicrateria, Emiliania, Gephyrocapsa, Isochrysis) See also: coccolithophores v t e Eukaryota: SAR: Heterokonta or Stramenopiles Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Ochrophyta (mostly photosynthetic) Phaeista Hypogyristea Pinguiophyceae Pelagophyceae Dictyochophyceae/ Actinochrysophyceae/ Axodines Dictyochales/Silicoflagellates Rhizochromulinales Florenciellales Actinodines Pedinellales Ciliophryida Actinophryida Chrysista Chrysophyceae, golden algae Chromulinales Chrysosphaerales Hibberdiales Hydrurales Phaeothamniales Eustigmatophyceae Eustigmataceae Monodopsidaceae Pseudocharaciopsidaceae Phaeophyceae, brown algae Ascoseirales Cutleriales Desmarestiales Dictyotales Discosporangiales Ectocarpales Fucales Ishigeales Laminariales Nemodermatales Onslowiales Ralfsiales Scytosiphonales Scytothamnales Sphacelariales Sporochnales Syringodermatales Tilopteridales Phaeothamniophyceae Phaeothamniales Pleurochloridellales Raphidophyceae Chattonella, Fibrocapsa, Gonyostomum, Haramonas, Heterosigma, Vacuolaria Synurophyceae Heterogloeales Ochromonadales Rhizochloridales Synurales Xanthophyceae, yellow-green algae Botrydiales Mischococcales Tribonematales Vaucheriales Khakista Bolidophyceae Bolidomonas Bacillariophyta, diatoms Coscinodiscophyceae Biddulphiophycidae Chaetocerotophycidae Corethrophycidae Coscinodiscophycidae Cymatosirophycidae Lithodesmiophycidae Rhizosoleniophycidae Thalassiosirophycidae Bacillariophyceae Bacillariales Naviculales Fragilariophyceae Fragilariales Heterotrophic groups Pseudofungi Oomycetes Hyphochytriomycetes Bigyra Bigyromonadea Bicosoecea Sagenista Labyrinthulomycetes Eogyrea Opalinata/Slopalinida Opalinidae Proteromonadidae Blastocystis v t e Eukaryota: SAR: Alveolata Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Acavomonidia Acavomonadea Acavomonadida (Acavomonas) Ciliophora Intramacronucleata Armophorea (Metopus) Cariacotrichea (Cariacothrix caudata) Colpodea (Colpoda) Litostomatea (Balantidium, Dileptus) Nassophorea (Nassula) Oligohymenophorea (Ichthyophthirius, Paramecium, Tetrahymena, Vorticella) Phyllopharyngea (Chilodonella, Tokophrya) Plagiopylea (Plagiopyla) Prostomatea (Coleps, Holophrya) Protocruziea (Protocruzia) Spirotrichea (Euplotes, Stylonychia) Postciliodesmatophora Heterotrichea (Stentor, Climacostomum, Blepharisma) Karyorelictea (Loxodes, Tracheloraphis) Mesodiniea (Mesodinium, Myrionecta) Colponemidia Colponemadea Colponemadida (Colponema) Myzozoa Apicomplexa Aconoidasida Haemospororida Garniidae (Garnia) Haemoproteidae (Haemoproteus) Leucocytozoidae (Leucocytozoon) Plasmodiidae (Plasmodium) Piroplasmida Babesiidae (Babesia) Theileriidae (Theileria) Conoidasida Coccidia Agamococcidiorida Gemmocystidae (Gemmocystis) Rhytidocystidae (Rhytidocystis) Eucoccidiorida Adeleorina Adeleidae Dactylosomatidae (Babesiosoma, Dactylosoma) Haemogregarinidae (Haemogregarina) Hepatozoidae (Hepatozoon) Karyolysidae (Karyolysus) Klossiellidae (Klossiella) Legerellidae (Legerella) Eimeriorina Aggregatidae (Aggregata, Grasseella, Merocystis, Ovivora, Pseudoklossia, Selysina) Atoxoplasmatidae Barrouxiidae Calyptosporiidae Caryotrophidae Cryptosporidiidae (Cryptosporidium) Eimeriidae (Cyclospora, Eimeria, Isospora) Elleipsisomatidae Lankesterellidae Selenococcidiidae Sarcocystidae Sarcocystinae (Frenkelia, Sarcocystis) Toxoplasmatinae (Besnoitia, Hammondia, Hyaloklossia, Nephroisospora, Neospora, Toxoplasma) Ixorheorida Ixorheidae (Ixorheis) Protococcidiorida Angeiocystidae (Angeiocystis) Eleutheroschizonidae (Coelotropha, Defretinella, Eleutheroschizon) Grelliidae (Coelotropha, Grellia) Mackinnoniidae (Mackinnonia) Myriosporidae (Myriosporides, Myriospora) Gregarinia Archigregarinorida Exoschizonidae (Exoschizon) Selenidioididae (Merogregarina, Meroselenidium, Selenidioides, Veloxidium) Eugregarinorida Aseptatorina Aikinetocystidae Allantocystidae Diplocystidae Enterocystidae Ganymedidae Lecudinidae Monocystidae (Monocystinae, Oligochaetocystinae, Rhynchocystinae, Stomatophorinae, Zygocystinae) Schaudinnellidae Selenidiidae Thiriotiidae Urosporidae Blastogregarinorina Siedleckiidae (Siedleckia) Septatorina Fusionicae (Fusionidae) Gregarinicae (Cephaloidophoridae, Cephalolobidae, Didymophoridae, Gregarinidae, Hirmocystidae, Metameridae, Uradiophoridae) Porosporicae (Porosporidae) Stenophoricae (Acutidae, Amphiplatysporidae, Brustiophoridae, Cnemidosporidae, Dactylophoridae, Leidyanidae, Monoductidae, Monoicidae, Sphaerocystidae, Stenophoridae, Trichorhynchidae) Stylocephaloidea (Actinocephalidae, Stylocephalidae) Blabericolidae Neogregarinorida Schizogregarinina (Caulleryellidae, Ophryocystidae) Gigaductidae (Gigaductus) Lipotrophidae (Apicystis, Farinocystis, Lipotropha, Lipocystis, Mattesia, Menzbieria) Schizocystidae (Lymphotropha, Machadoella, Schizocystis) Syncystidae (Syncystis) Apicomonadea Chromerida Chromeraceae (Chromera velia) Vitrellaceae (Vitrella brassicaformis) Colpodellida Colpodellidae (Colpodella) Voromonadida Alphamonadidae (Alphamonas) Voromonadidae (Voromonas) Dinoflagellata Dinokaryota With a theca: Dinophysiales (Dinophysis, Histioneis, Ornithocercus, Oxyphysis) Gonyaulacales (Ceratium, Gonyaulax) Peridiniales (Pfiesteria, Peridinium) Prorocentrales (Prorocentrum) Without theca: Gymnodiniales (Amphidinium, Gymnodinium, Karenia, Karlodinium) Suessiales (Polarella, Symbiodinium) Noctilucea Noctilucales (Noctiluca) Syndinea Syndiniales: Amoebophryaceae (Amoebophyra) Duboscquellaceae (Duboscquella) Syndiniaceae (Hematodinium, Syndinium) Other Acrocoelidae (Acrocoelus) Ichthyodinium Oxyrrhinaceae (Oxyrrhis) Pronoctilucidae (Pronoctiluca) Psammosidae (Psammosa) Perkinsozoa Perkinsea Perkinsidae (Perkinsus) Phagodinida (Phagodinium) Rastromonadida (Parvilucifera, Rastrimonas) Protoalveolata Ellobiopsea Ellobiopsidae (Elliobiocystis, Ellobiopsis, Parallobiopsis, Thalassomyces, Rhizellobiopsis) Myzomonadea Algovorida Algovoridae (Algovora) Chilovorida Chilovoridae (Chilovora) Squirmidea Squirmidae (Filipodium, Platyproteum) v t e Amoebozoa Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Lobosa Cutosea Squamocutida Squamamoebidae Sapocribridae Glycopoda Discosea Hyalodiscida Hyalodiscidae Centramoebia Centramoebida Acanthamoebidae Balamuthiidae Cochliopodiida Parvamoebina Parvamoebidae Tectiferina Cochliopodiidae Pellitina Pellitidae Goceviidae Flabellinia Thecamoebida Stenamoebidae Thecamoebidae Mayorellidae Mayorella Dermamoebida Dermamoebidae Glycostylida Vannellina Vannellidae Discamoebidae Stygamoebina Stygamoebidae Dactylopodina Paramoebidae Vexilliferidae Tubulinea Echinamoebida Echinamoebidae Vermamoebidae Leptomyxida Flabellina Flabellulidae Leptomyxina Gephyramoebidae Leptomyxidae Neolobosia Trichosida Trichosphaerium Eulobosia Euamoebida Nolandellidae Amoebidae Hartmannellidae Arcellinida Phryganellina Eulobosina Centropyxidae Difflugidae Conosa Archamoebae incertae sedis Tricholimacidae Endamoebidae Entamoebida Entamoebidae Pelobiontida Pelomyxina Pelomyxidae Mastigamoebina Mastigamoebidae Semiconosia Variosea (paraphyletic) Holomastigida Phalansteriida Artodiscida Varipodida Mycetozoa Myxogastria Echinosteliopsida Ceratiomyxida Lucisporidia Liceida Trichiida Echinostelida Echinosteliidae Clastodermidae Fuscisporida Lamprodermina Stemonitina Physarina Others Protosteliales Protosporangiida Dictyosteliida Incertae sedis Multicilia v t e Opisthokonta Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Holomycota Cristidiscoidea Nucleariida Nucleariidae Fonticulida Fonticulaceae O+F Opisthosporidia Aphelida Aphelidea Aphelidida C+M Cryptomycota Rozellidea Rozellida Microsporidia Metchnikovellea Metchnikovellida Microsporea Chytridiopsida Glugeida Meiodihaplophasida Dissociodihaplophasida True Fungi Neocallimastigomycota Chytridiomycota Blastocladiomycota Olpidiomycota Entomophthoromycota Kickxellomycota Mucoromycota Glomeromycota Entorrhizomycota Ascomycota Basidiomycota Holozoa Teretosporea Corallochytrea Corallochytriida Corallochytriidae Ichthyosporea Dermocystida Rhinosporidiaceae Ichthyophonida Sphaeroformina Psorospermidae Piridae Creolimacidae Trichomycina Ichthyophonidae Amoebidiidae Palavasciaceae Parataeniellaceae Eccrinaceae Filozoa Filasterea Ministeriida Capsasporidae Ministeriidae Apoikozoa Choanoflagellate Acanthoecida Stephanoecidae Acanthoecidae Craspedida Codonosigidae Salpingoecidae Metazoa (Animalia) Porifera Ctenophora Placozoa Cnidaria Xenacoelomorpha Deuterostome chordates echinoderms Protostome Ecdysozoa inc. arthropods and nematodes Spiralia inc. molluscs and annelids Sources and alternative views: Wikispecies. v t e Extant Animal phyla Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) A n i m a l i a Porifera (sponges) Diploblasts (Eumetazoa) Ctenophora (comb jellies) ParaHoxozoa Placozoa (Trichoplax) Planulozoa Cnidaria (jellyfish and relatives) Bilateria (Triploblasts) (see below↓) Bilateria Xenacoelomorpha Xenoturbellida (Xenoturbella) Acoelomorpha acoels nemertodermatids N e p h r o z o a Deuterostomia Chordata lancelets tunicates craniates / vertebrates Ambulacraria Echinodermata (starfish and relatives) Hemichordata acorn worms pterobranchs P r o t o s t o m i a Ecdysozoa Scalidophora Kinorhyncha (mud dragons) Priapulida (penis worms) N+L+P Nematoida Nematoda (roundworms) Nematomorpha (horsehair worms) L+P Loricifera Panarthropoda Arthropoda (arthropods) Tardigrada (waterbears) Onychophora (velvet worms) S p i r a l i a Gnathifera¹ Chaetognatha (arrow worms) Gnathostomulida (jaw worms) Micrognathozoa (Limnognathia) Syndermata Rotifera Acanthocephala Platytrochozoa R+M Mesozoa Orthonectida Dicyemida or Rhombozoa Rouphozoa¹ Platyhelminthes (flatworms) Gastrotricha (hairybacks) Lophotrochozoa Cycliophora (Symbion) Mollusca (molluscs) A+N Annelida (ringed worms) Nemertea (ribbon worms) Lophophorata Bryozoa Entoprocta or Kamptozoa Ectoprocta (moss animals) Brachiozoa Brachiopoda (lamp shells) Phoronida (horseshoe worms) Major groups within phyla Sponges Calcareous Hexactinellid Demosponge Homoscleromorpha Cnidarians Anthozoa inc. corals Medusozoa inc. jellyfish Myxozoa Vertebrates Jawless fish Cartilaginous fish Bony fish Amphibians Reptiles/Birds Mammals Echinoderms Sea lilies Asterozoa inc. starfish Echinozoa Nematodes Chromadorea Enoplea Secernentea Arthropods Chelicerates/Arachnids Myriapods Crustaceans Hexapods/Insects Platyhelminths Turbellaria Trematoda Monogenea Cestoda Bryozoans Phylactolaemata Stenolaemata Gymnolaemata Annelids Polychaetes Clitellata Echiura Molluscs Gastropods Cephalopods Bivalves Chitons Tusk shells Phyla with ≥5000 extant species bolded See also Diploblasts Monoblastozoa (nomen dubium) ¹Platyzoa v t e Opisthokont: True fungi classification, fungal orders Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta Animal Fungi) Dikarya Ascomycota (sac fungi) Pezizomycotina Leotiomyceta Dothideomyceta Coniocybomycetes Lichinomycetes Arthoniomycetes Dothideomycetes Eurotiomycetes Lecanoromycetes Sordariomyceta Xylonomycetes Geoglossomycetes Leotiomycetes Laboulbeniomycetes Sordariomycetes Other Orbiliomycetes Pezizomycetes Saccharomycotina Saccharomycetes Taphrinomycotina Archaeorhizomycetes Neolectomycetes Pneumocystidomycetes Schizosaccharomycetes Taphrinomycetes Basidiomycota (with basidia) Pucciniomycotina Tritirachiomycetes Mixiomycetes Agaricostilbomycetes Cystobasidiomycetes Microbotryomycetes Classiculomycetes Cryptomycocolacomycetes Atractiellomycetes Pucciniomycetes Ustilaginomycotina Monilielliomycetes Malasseziomycetes Ustilaginomycetes Exobasidiomycetes Agaricomycotina Hymenomycete Dacrymycetales Agaricomycetes Other Wallemiomycetes Bartheletiomycetes Tremellomycetes Entorrhizomycota Entorrhizomycetes Glomeromycota Glomeromycetes Zygomycota (paraphyletic) Mucoromycotina Mortierellomycetes Mucoromycetes Kickxellomycotina Zoopagomycetes Kickxellomycetes Entomophthoromycotina Neozygitomycetes Basidiobolomycetes Entomophthoromycetes Zoosporic fungi (paraphyletic) Olpidiomycota Olpidiomycetes Blastocladiomycota Blastocladiomycetes Chytridiomycota Neocallimastigomycetes Hyaloraphidiomycetes Monoblepharidomycetes Chytridiomycetes Fungal phyla are underlined. See also: fungi imperfecti (polyphyletic group). v t e Organisms and comparable organic structures Life Bacteria Archaea Eukaryota (Animalia Fungi Plantae Protista) Non-cellular agents Virus dsDNA virus ssDNA virus dsRNA virus (+)ssRNA virus (−)ssRNA virus ssRNA-RT virus dsDNA-RT virus Viroid Pospiviroidae Avsunviroidae Prion Mammalian prion Fungal prion Virus dependent Satellite ssRNA satellite virus dsDNA satellite virus (Virophage) ssDNA satellite dsRNA satellite ssRNA satellite (Virusoid) Defective interfering particle Defective Interfering RNA Defective interfering DNA Taxon identifiers Wd: Q19088 AlgaeBase: 86701 EoL: 2908256 Fossilworks: 306691 NCBI: 2759 Authority control GND: 4070991-7 Retrieved from "" Categories: EukaryotesDomains (biology)Hidden categories: CS1 maint: Uses editors parameterWikipedia articles needing page number citations from November 2017Wikipedia indefinitely move-protected pagesArticles with 'species' microformatsArticles containing potentially dated statements from 2011All articles containing potentially dated statementsAll articles with unsourced statementsArticles with unsourced statements from March 2017Wikipedia articles incorporating text from the United States National Library of MedicineAll articles with dead external linksArticles with dead external links from March 2017Use dmy dates from July 2011Use American English from March 2017All Wikipedia articles written in American EnglishWikipedia articles with GND identifiersArticles containing video clips

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia CommonsWikispeciesWikiversity Languages AfrikaansAlemannischالعربيةAragonésAsturianuAzərbaycancaবাংলাBân-lâm-gúБеларускаяБеларуская (тарашкевіца)‎БългарскиBoarischBosanskiBrezhonegCatalàČeštinaCymraegDanskDeutschDolnoserbskiEestiΕλληνικάEspañolEsperantoEuskaraفارسیFrançaisGaeilgeGaelgGalego客家語/Hak-kâ-ngî한국어Հայերենहिन्दीHornjoserbsceHrvatskiIdoIlokanoBahasa IndonesiaInterlinguaÍslenskaItalianoעבריתBasa JawaKapampanganქართულიҚазақшаKiswahiliKreyòl ayisyenKurdîКыргызчаLatinaLatviešuLëtzebuergeschLietuviųLigureLimburgsLumbaartMagyarМакедонскиമലയാളംमराठीმარგალურიBahasa MelayuMìng-dĕ̤ng-ngṳ̄МонголNederlands日本語NapulitanoNordfriiskNorskNorsk nynorskNovialOccitanਪੰਜਾਬੀپنجابیPlattdüütschPolskiPortuguêsRomânăРусскийСаха тылаScotsShqipSicilianuSimple EnglishSlovenčinaSlovenščinaСрпски / srpskiSrpskohrvatski / српскохрватскиBasa SundaSuomiSvenskaTagalogதமிழ்Татарча/tatarçaไทยТоҷикӣTürkçeУкраїнськаاردوTiếng ViệtWalonWest-VlamsWinarayייִדישYorùbá粵語中文 Edit links This page was last edited on 15 January 2018, at 01:53. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"2.276","walltime":"2.538","ppvisitednodes":{"value":24899,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":1811140,"limit":2097152},"templateargumentsize":{"value":74681,"limit":2097152},"expansiondepth":{"value":24,"limit":40},"expensivefunctioncount":{"value":12,"limit":500},"entityaccesscount":{"value":4,"limit":400},"timingprofile":["100.00% 2047.133 1 -total"," 52.12% 1067.004 133 Template:Navbox"," 43.01% 880.404 70 Template:Clade"," 35.58% 728.421 1 Template:Reflist"," 21.80% 446.295 89 Template:Cite_journal"," 18.07% 370.015 1 Template:Automatic_taxobox"," 17.79% 364.218 1 Template:Taxobox/core"," 11.18% 228.927 1 Template:Long_fossil_range"," 10.88% 222.656 94 Template:Period_start"," 10.26% 209.992 1 Template:All_time_250px"]},"scribunto":{"limitreport-timeusage":{"value":"1.195","limit":"10.000"},"limitreport-memusage":{"value":9106216,"limit":52428800}},"cachereport":{"origin":"mw1332","timestamp":"20180116201903","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":130,"wgHostname":"mw1264"});});

Eukaryotic - Photos and All Basic Informations

Eukaryotic More Links

Eukaryotic Cell (journal)RhyacianHoloceneHadeanArcheanProterozoicPhanerozoicOsmia BicornisBoletus EdulisCommon ChimpanzeeIsotricha IntestinalisRanunculus AsiaticusVolvox CarteriTaxonomy (biology)EÉdouard ChattonRobert WhittakerLynn MargulisKingdom (biology)Kingdom (biology)ArchaeplastidaPlantSAR SupergroupHeterokontAlveolataRhizariaExcavataAmoebozoaOpisthokontaAnimalFungusProtistaHelp:IPA/EnglishHelp:IPA/EnglishOrganismCell NucleusOrganelleBiological MembraneDomain (biology)Unicellular OrganismMulticellular OrganismProkaryoteBacteriaArchaeaGenomeNuclear MembraneGreek LanguageMitochondrionGolgi ApparatusPlantAlgaeChloroplastUnicellular OrganismMulticellular OrganismTissue (biology)Cell TypeAsexual ReproductionMitosisSexual ReproductionMeiosisGameteDNA ReplicationCell DivisionPloidyChromosomeGenetic RecombinationDomain (biology)MonophylyThree-domain SystemBiomass (ecology)ProterozoicEnlargeKonstantin MereschkowskiSymbiogenesisKonstantin MereschkowskiPlastidCyanobacteriaMutualism (biology)PhotosynthesisHeterotrophEdouard ChattonRoger StanierC. B. Van NielLynn MargulisEndosymbiontCarl WoesePhylogeneticsRibosomal RNASymbiogenesisOrganelleMitochondriaChloroplastNucleus (cell)Gram-positive BacteriaEndosporeThomas Cavalier-SmithEndoplasmic ReticulumProkaryoteCytoskeletonMicrotubuleMicrofilamentIntermediate FilamentDNAChromosomeSpindle ApparatusEnlargeEndomembrane SystemVesicle (biology)VacuoleEndocytosisInvaginationNuclear MembraneEndoplasmic ReticulumRibosomeCisternaGolgi ApparatusLysosomeEnzymeBiomoleculePeroxisomePeroxideProtozoaExtrusomeOsmotic PressureEnlargeMitochondrionAdenosine TriphosphateMitochondrionLipid BilayerInner Mitochondrial MembraneCristaeAerobic RespirationMitochondrial DNAEndosymbiosisProteobacteriaPelomyxaMetamonadGiardiaTrichomonasHydrogenosomeMitosomeMonocercomonoidesLateral Gene TransferAlgaePlastidEndosymbiontsCyanobacteriaChloroplastChlorophyllGlucosePhotosynthesisEvolution Of FlagellaCytoskeletonEnlargeChlamydomonas ReinhardtiiFlagellumCiliumUndulipodiaTubulinCentrioleMastigonemesCytoplasmActinActininFimbrinFilaminMotor ProteinDyneinKinesinMyosinsCentriolesConiferAngiospermChemotaxisChemokinesisRadiolariaHeliozoaPseudopodiaHaptophyteHaptonemaCell WallChromalveolataCell MembranePolysaccharidesLand PlantsCelluloseHemicellulosePectinMicrofibrilXyloglucanEnlargeEnlargeEnlargePlant CellPlant CellsCell WallChloroplastVacuoleCell WallPhagocyteCell TypeList Of Distinct Cell Types In The Adult Human BodyPlant CellPlant CellVacuoleTonoplastTurgorMoleculeCytosolPlant SapCell WallCelluloseHemicellulosePectinProtoplastCell MembraneFungusChitinCell EnvelopePeptidoglycanPlasmodesmataGap JunctionPlastidChloroplastChlorophyllPlantPhotosynthesisBryophytePteridophyteCycadGinkgoPinophytaFlowering PlantFlagellumCentrioleEnlargeErgosterolSpitzenkörperFungiChitinHyphaSeptumCoenocyticChytridGlaucophyteHaptophyteEjectosomeCryptomonadPseudopodiaAmoebozoaForaminiferanEnlargeCell DivisionAsexual ReproductionMitosisChromosomeSexual ReproductionHaploidDiploidMeiosisEvolution Of Sexual ReproductionAndrew J. RogerTrichomonas VaginalisGiardia IntestinalisLeishmaniaEnlargeEnlargeOpisthokontaArchaeplastidaEnlargeAncient HistoryAnimalPlantTaxonomic RankKingdom (biology)Carl LinnaeusFungiGeorg A. GoldfussProtozoaCiliateProtistaErnst HaeckelProtistaPlantaeFungiAnimaliaEvolutionary GradeTree Of Life (biology)Nucleic Acid SequenceDomain (biology)Carl WoeseKingdom (biology)MonophyleticChromalveolataArchaeplastidaEmbryophyteGreen AlgaRed AlgaGlaucophyteSAR SupergroupHeterokontBrown AlgaeDiatomsAlveolateRhizariaForaminiferaRadiolariaAmoeboidExcavateFlagellateAmoebozoaAmoeboidSlime MoldOpisthokontaAnimalFungusChoanoflagellateHaptophytaCryptophytaCentrohelidaTelonemiaPicozoaApusomonadidaAncyromonadidaBreviataCollodictyonAndrew J. RogerUniversity Of California, BerkeleyRRNACrown GroupCrown EukaryotesMitochondriaLong-branch AttractionCladeSAR SupergroupUnikontBabesia BovisCentrioleCiliumMeiosisSyngamyCystChitinCellulosePeroxisomeArchaeplastidaDiaphoretickesArchaeplastidaRed AlgaePicozoaGlaucophytaGreen PlantsCryptistaHaptistaTelonemiaSAR SupergroupHalvariaStramenopilesAlveolataRhizariaDiscobaAmorpheaAmoebozoaApusomonadidaOpisthokontaHolomycotaHolozoaHacrobiaHacrobiaHaptophytaCryptophytaArchaeplastidaSAR SupergroupArchaeplastidaBikontsArchaeplastidaSAR SupergroupExcavataUnikontsAmoebozoaOpisthokontaBikontChloroplastCyanobacteriaGloeobacterDiphodaDiaphoretickesArchaeplastidaGlaucophytaRhodophytaViridiplantaeHacrobiaHaptistaCryptistaSAR SupergroupHalvariaStramenopilesAlveolataRhizariaDiscobaOpimodaMetamonadaAncyromonasMalawimonasPodiataVarisulcaVarisulcaRigifilidaVarisulcaAmorpheaAmoebozoaObazoaBreviataApusomonadidaOpisthokontaThomas Cavalier-SmithExcavataEuglenozoaTsukubeaDiscicristataEuglenozoaPercolozoaOrthokaryotesJakobeaNeokaryotesCorticataPlantaeGlaucophytesRhodophytesViridiplantaeChromistaHacrobiaSAR SupergroupScotokaryotesMetamonadaOpimodaMalawimonadeaPodiataAncyromonadidaVarisulcaVarisulcaAmorpheaAmoebozoaObazoaBreviateaApusomonadidaOpisthokontaEnlargeEocyte HypothesisEnlargePhylogenetic TreeArchaeaBacteriaAndrew H. KnollAcritarchGrypaniaGeosiphonFungusDiskagmaBlack ShaleRed AlgaeFilamentous AlgaeVindhyaBiomarkerStem GroupSteraneAustraliaShaleArchaeaBacteriaNeomuraEubacteriumViral EukaryogenesisPre-cellSymbiogenesisEnlargeRibosomal RNAExcavataProteoarchaeotaTACKKorarchaeotaCrenarchaeotaAigarchaeotaGeoarchaeotaThaumarchaeotaBathyarchaeotaLokiarchaeotaOdinarchaeotaThorarchaeotaHeimdallarchaeotaAlphaproteobacteriaTACKCrenarchaeotaEocyte HypothesisThaumarchaeotaHydrogen HypothesisSupertreeSyntrophyThermoplasmatalesAlphaproteobacteriaSymbiosisHypothesesAn Autogenous Model For The Origin Of Eukaryotes.Cell NucleusMitochondrionProkaryoteInvaginationsPlasma MembraneSurface Area To Volume RatioCytoplasmicEndomembrane SystemEndoplasmic ReticulumGolgi ApparatusNuclear MembraneLysosomeMitochondriaEndosymbiosisProteobacteriumCyanobacteriaSerial EndosymbiosisArchaeaBacteriaEndosymbiontSymbiosisEndosymbiontHydrogen HypothesisLynn MargulisAnaerobic OrganismCrenarchaeonMetabolismFermentation (biochemistry)ElectronMotilityGenomeSpirochetePlastidEctosymbiosisSyntrophyAutotrophHydrogenCarbon DioxideMethaneCarbohydrateHeterotrophLineage (evolution)Wikipedia:Citation NeededGeneCytoplasmEvolutionAnabolismCatabolismProtein BiosynthesisIntronMethanogenesisWikipedia:Citation NeededPortal:BiologyBook:EukaryoteEvolution Of Sexual ReproductionList Of Sequenced Eukaryotic GenomesParakaryon MyojinensisProkaryoteThaumarchaeotaVault (organelle)Digital Object IdentifierPubMed CentralPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/0-00-722134-7International Standard Book NumberSpecial:BookSources/0-7167-4339-6International Standard Book NumberSpecial:BookSources/0-333-34867-2Online Etymology DictionaryProc. Natl. Acad. Sci. USABibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierLynn MargulisJ Theor BiolDigital Object IdentifierPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/978-9400715332Category:CS1 Maint: Uses Editors ParameterInternational Standard Book NumberSpecial:BookSources/978-0-19-963851-2Digital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-1-4020-4060-3International Standard Book NumberSpecial:BookSources/978-0-465-07271-2OCLCWikipedia:Citing SourcesLynn MargulisInternational Standard Book NumberSpecial:BookSources/0-86720-081-2Digital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-12-364506-7PubMed IdentifierInternational Standard Book NumberSpecial:BookSources/0-19-511183-4Digital Object IdentifierDigital Object IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/1-4051-3066-0American Journal Of BotanyDigital Object IdentifierPubMed IdentifierDigital Object IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierInternational MicrobiologyLynn J. RothschildDigital Object IdentifierPubMed IdentifierProc Natl Acad Sci USABibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierInternational Journal Of Systematic And Evolutionary MicrobiologyDigital Object IdentifierPubMed IdentifierPLoS Genet.Digital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierDag Klaveness (limnologist)Digital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierDigital Object IdentifierPubMed IdentifierNature MicrobiologyDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierThomas Cavalier-SmithDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierThomas Cavalier-SmithDigital Object IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierPhilosophical Transactions Of The Royal Society BDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierPubMed IdentifierPeter Ward (paleontologist)New ScientistDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierPhilosophical Transactions Of The Royal Society BDigital Object IdentifierPubMed CentralPubMed IdentifierNick LaneThe Vital QuestionInternational Standard Book NumberSpecial:BookSources/978-1-781-25037-2Digital Object IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-387-74020-1PubMed IdentifierDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierDigital Object IdentifierPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-521-76131-4Copyright Status Of Work By The U.S. GovernmentNational Center For Biotechnology InformationWikipedia:Link RotWikispeciesEncyclopedia Of LifeTemplate:EukaryotaTemplate Talk:EukaryotaDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationPlants+HC+SAR MegagroupPlantGlaucophyteRed AlgaeViridiplantaePlantGreen AlgaeStreptophytaCryptistaCorbiheliaCryptophytaHaptistaCentroheliozoaHaptophytaSAR SupergroupHalvariaAlveolateCiliateMyzozoaHeterokontBicosoecidHyphochytriomycotaOchrophytaOomycotaPirsonialesPlacidozoaSagenistaRhizariaFilosaPhytomyxeaRetariaIncertae SedisKamera LensExcavataAncyromonadidaMalawimonadeaMetamonadaAnaeromonadaTrichozoaDiscobaJakobeaTsukubeaDiscicristataEuglenozoaPercolozoaPodiataAmorpheaAmoebozoaConosaArchamoebaeSemiconosiaLobosaCutoseaDiscoseaTubulineaObazoaApusomonadidaBreviateaOpisthokontHolomycotaCristidiscoideaOpisthosporidiaAphelidaCryptomycotaMicrosporidiaFungusHolozoaChoanoflagellateFilastereaAnimalTeretosporeaMesomycetozoeaCorallochytreaVarisulcaMantamonadidaRigifilidaIncertae SedisAncoracysta TwistaParakaryon MyojinensisAcritarchCharniaGrypaniaKingdom (biology)ProtistTemplate:ExcavataTemplate Talk:ExcavataExcavateDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationExcavataDiscicristataEuglenozoaPostgaardeaPostgaardidaPostgaardidaeGlycomonadaDiplonemeaDiplonemidaDiplonemidaeKinetoplasteaBodonidaTrypanosomatidaEuglenidaEuglenophyceaeEuglenalesEuglenaceaePercolozoaPercolozoaGruberellidaeAcrasidaAcrasidaeSchizopyrenidaVahlkampfiidaePercolateaPercolomonasStephanopogonJakobeaJakobidaJakobidaeHistionidaeTsukubeaLoukozoaMetamonadTrichozoaParabasalidTrichonymphidaTrichomonadidaFornicataEopharingiaDiplomonadRetortamonadidaRetortamonasCarpediemonadeaCarpediemonadidaCarpediemonasDysnectes BrevisChilomastix MesniliAnaeromonadaAnaeromonadeaTrimastixOxymonadMalawimonadeaMalawimonasAncyromonadidaAncyromonadidaAncyromonadidaTemplate:Plant ClassificationTemplate Talk:Plant ClassificationArchaeplastidaPlantDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationRed AlgaeCyanidiophyceaePorphyridiophyceaeCompsopogonophyceaeStylonematophyceaeRhodellophyceaeBangiophyceaeFlorideophyceaeGlaucophyteGlaucophyteGlaucocystisCyanophoraGloeochaeteViridiplantaeGreen AlgaeChlorophytaPalmophyllalesNephroselmidophyceaePrasinophyceaePseudoscourfieldialesPyramimonadalesScourfieldialesPedinomonadaceaeChlorodendralesUTC CladeUlvophyceaeTrebouxiophyceaeChlorophyceaeStreptophytaCharophytesMesostigmaChlorokybusKlebsormidiaceaePhragmoplastophytaCharophyceaeColeochaetalesZygnematophyceaeEmbryophyteBryophyteMarchantiophytaHornwortMossHorneophytopsidaVascular PlantLycopodiophytaMicrophyllZosterophyllopsidaSawdonialesIsoetopsidaLycopodiopsidaEuphyllophyteMegaphyllMoniliformopsesCladoxylopsidaStauropteridalesZygopteridalesEquisetopsidaPsilotopsidaMarattiaceaeFernSpermatophytePteridospermatophytaGymnospermGnetophytaPinophytaCycadGinkgoalesFlowering PlantAmborellalesNymphaealesAustrobaileyalesMagnoliidsMonocotyledonEudicotsTrimerophytopsidaProgymnospermRhyniopsidaExtinctList Of Plant OrdersTemplate:HacrobiaTemplate Talk:HacrobiaEukaryotaHacrobiaDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationCryptistaCorbiheliaEndoheleaHeliomonadidaPicobiliphyteTelonemiaCryptomonadPalpiteaKatablepharidaGoniomonasCryptophyceaeCryptomonadalesCryptomonadaceaePlagioselmisCryptomonasChilomonasGoniomonasHemiselmisPyrenomonadalesChroomonasKomma CaudataFalcomonasGeminigeraceaeGuillardiaHanusiaGeminigeraTeleaulaxProteomonasPyrenomonasRhinomonasRhodomonasStoreatulaHaptistaCentroheliozoaCentroheleaRaphidiophryidaeHaptophytaPavlovophyceaePavlovalesPavlovaceaePrymnesiophyceaeCoccolithalesPleurochrysis (chromalveolate)CoccolithusChrysochromulinaPrymnesiumIsochrysidalesChrysotilaDicrateriaEmiliania (Coccolithophore)GephyrocapsaIsochrysisCoccolithophoreTemplate:HeterokontTemplate Talk:HeterokontEukaryotaSAR SupergroupHeterokontaDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationOchrophytaPhaeistaHypogyristeaPinguiophyceaePelagophyteDictyochophyceaeAxodineDictyochalesRhizochromulinalesFlorenciellalesPedinellalesActinophryidaChrysistaGolden AlgaeChromulinalesChrysosphaeralesHibberdialesHydruralesPhaeothamnialesEustigmatophyteBrown AlgaeAscoseiraCutlerialesDesmarestialesDictyotalesDiscosporangialesEctocarpalesFucalesIshigealesLaminarialesNemodermatalesOnslowialesRalfsialesScytosiphonalesScytothamnalesSphacelarialesSporochnalesSyringodermatalesTilopteridalesPhaeothamniophyceaePhaeothamnialesRaphidophyteChattonellaGonyostomumHeterosigmaSynuridSynuralesYellow-green AlgaeBotrydialesKhakistaBolidomonasBolidomonasDiatomCoscinodiscophyceaeBiddulphiophycidaeChaetocerotophycidaeCoscinodiscophycidaeCymatosirophycidaeRhizosoleniophycidaeDiatomBacillarialesNaviculalesFragilariophyceaePseudofungiOomyceteHyphochytriomycetesBigyraBigyromonadeaBicosoecidSagenistaLabyrinthulomycetesEogyreaOpalinataSlopalinidaOpalinidaeProteromonadidaeBlastocystisTemplate:AlveolataTemplate Talk:AlveolataEukaryotaSAR SupergroupAlveolataDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationCiliateCiliateArmophoreaMetopusCariacotricheaCariacothrix CaudataColpodeaColpodaLitostomateaBalantidiumDileptusNassophoreaNassulaOligohymenophoreaIchthyophthirius MultifiliisParameciumTetrahymenaVorticellaPhyllopharyngeaChilodonella UncinataTokophryaPlagiopylidPlagiopylaProstomateaColepsProtocruzieaSpirotrichEuplotesStylonychiaCiliateHeterotrichStentor (protozoa)ClimacostomumBlepharismaKaryorelicteaLoxodesTracheloraphisMesodinium ChamaeleonMyzozoaApicomplexaAconoidasidaHaemospororidaGarniidaeGarnia (protist)HaemoproteidaeHaemoproteusLeucocytozoonPlasmodiidaePlasmodiumPiroplasmidaBabesiaTheileriidaeTheileriaConoidasidaCoccidiaAgamococcidioridaGemmocystisRhytidocystidaeRhytidocystisEucoccidioridaAdeleorinaAdeleidaeDactylosomatidaeBabesiosomaDactylosomaHaemogregarinidaeHaemogregarinaHepatozoidaeHepatozoonKaryolysidaeKaryolysusKlossiellidaeKlossiellaLegerellidaeLegerellaEimeriorinaAggregataGrasseellaMerocystisOvivoraPseudoklossiaSelysinaCryptosporidiidaeCryptosporidiumEimeriidaeCyclosporaEimeriaIsosporaSarcocystidaeFrenkeliaSarcocystisBesnoitiaHammondiaHyaloklossiaNephroisosporaNeosporaToxoplasmaIxorheoridaIxorheisProtococcidioridaAngeiocystisEleutheroschizonidaeDefretinellaMyriospora (alveolate)GregariniaArchigregarinoridaExoschizonidaeExoschizonSelenidioididaeMerogregarinaMeroselenidiumSelenidioidesVeloxidiumEugregarinoridaAseptatorinaAikinetocystidaeAllantocystidaeDiplocystidaeEnterocystidaeGanymedidaeLecudinidaeMonocystidaeMonocystinaeOligochaetocystinaeRhynchocystinaeStomatophorinaeZygocystinaeSchaudinnellidaeSelenidiidaeThiriotiidaeUrosporidaeBlastogregarinorinaSiedleckiidaeSiedleckiaSeptatorinaFusionicaeFusionidaeGregarinicaeCephaloidophoridaePorosporicaePorosporidaeStenophoricaeStylocephaloideaActinocephalidaeStylocephalidaeBlabericolidaeNeogregarinoridaSchizogregarininaCaulleryellidaeOphryocystidaeGigaductidaeGigaductusLipotrophidaeApicystisFarinocystisLipotrophaLipocystisMattesiaMenzbieriaSchizocystidaeLymphotrophaMachadoellaSchizocystisSyncystidaeSyncystisChromeridaChromera VeliaVitrella BrassicaformisColpodellidaColpodellaVoromonasDinoflagellateDinokaryotaDinophysialesDinophysisHistioneisOrnithocercusOxyphysisGonyaulacalesCeratiumGonyaulaxPeridinialesPfiesteriaPeridiniumProrocentralesProrocentrumGymnodinialesAmphidiniumGymnodiniumKarenia (dinoflagellate)KarlodiniumSuessialesPolarellaSymbiodiniumNoctiluceaNoctilucalesNoctiluca ScintillansSyndineaSyndinialesAmoebophryaceaeAmoebophyraDuboscquellaceaeDuboscquellaHematodiniumSyndiniumAcrocoelusOxyrrhinaceaeOxyrrhisPerkinsozoaPerkinseaPerkinsidaePerkinsus MarinusParviluciferaCryptophagus (protozoa)EllobiopsisFilipodiumPlatyproteumTemplate:AmoebozoaTemplate Talk:AmoebozoaAmoebozoaDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationLobosaCutoseaSquamocutidaSquamamoebidaeSapocribridaeGlycopodaDiscoseaHyalodiscidaHyalodiscidaeCentramoebiaCentramoebidaAcanthamoebidaeBalamuthiidaeCochliopodiidaParvamoebinaParvamoebidaeTectiferinaCochliopodiidaePellitinaPellitidaeGoceviidaeFlabelliniaThecamoebidaStenamoebidaeThecamoebidaeMayorellidaeMayorellaDermamoebidaDermamoebidaeGlycostylidaVannellinaVannellidaeDiscamoebidaeStygamoebinaStygamoebidaeDactylopodinaParamoebidaeVexilliferidaeTubulineaEchinamoebidaEchinamoebidaeVermamoebidaeLeptomyxidaFlabellinaFlabellulidaeLeptomyxinaGephyramoebidaeLeptomyxidaeNeolobosiaTrichosidaTrichosphaeriumEulobosiaEuamoebidaNolandellidaeAmoebidaeHartmannellidaeArcellinidaPhryganellinaEulobosinaCentropyxidaeDifflugidaeConosaArchamoebaeIncertae SedisTricholimacidaeEndamoebidaeEntamoebidaEntamoebidaePelobiontidaPelomyxinaPelomyxidaeMastigamoebinaMastigamoebidaeSemiconosiaVarioseaHolomastigidaPhalansteriidaArtodiscidaVaripodidaMycetozoaMyxogastriaEchinosteliopsidaCeratiomyxidaLucisporidiaLiceidaTrichiidaEchinostelidaEchinosteliidaeClastodermidaeFuscisporidaLamproderminaStemonitinaPhysarinaProtostelialesProtosporangiidaDictyostelidIncertae SedisMulticiliaTemplate:Opisthokont ProtistsTemplate Talk:Opisthokont ProtistsOpisthokontDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationHolomycotaCristidiscoideaNucleariidaNucleariidaeFonticulaFonticulaOpisthosporidiaAphelidaCryptomycotaRozellideaRozellidaMicrosporidiaMetchnikovelleaMicrosporeaEumycotaNeocallimastigomycotaChytridiomycotaBlastocladiomycotaOlpidiaceaeEntomophthoromycotaKickxellomycotinaMucoromycotinaGlomeromycotaEntorrhizomycetesAscomycotaBasidiomycotaHolozoaTeretosporeaCorallochytreaIchthyosporeaDermocystidaIchthyophonidaAmoebidiidaeFilozoaFilastereaMinisteriidaCapsasporidaeApoikozoaChoanoflagellateAcanthoecidaeCraspedidaCodonosigidaeSalpingoecidaeAnimalPoriferaCtenophoraPlacozoaCnidariaXenacoelomorphaDeuterostomeChordatesEchinodermsProtostomeEcdysozoaSpiraliaTemplate:AnimaliaTemplate Talk:AnimaliaAnimalPhylumDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationAnimalSpongeDiploblastEumetazoaCtenophoraParaHoxozoaPlacozoaPlanulozoaCnidariaBilateriaTriploblastsBilateriaXenacoelomorphaXenoturbellaAcoelomorphaAcoelaNemertodermatidaNephrozoaDeuterostomeChordateLanceletTunicateCraniateVertebrateAmbulacrariaEchinodermHemichordateAcorn WormPterobranchiaProtostomeEcdysozoaScalidophoraKinorhynchaPriapulidaNematoidaNematodeNematomorphaLoriciferaPanarthropodaArthropodTardigradeOnychophoraSpiraliaGnathifera (clade)ChaetognathaGnathostomulidLimnognathiaSyndermataRotiferAcanthocephalaPlatytrochozoaMesozoaOrthonectidaDicyemidaRouphozoaFlatwormGastrotrichLophotrochozoaSymbionMolluscaAnnelidNemerteaLophophorataBryozoaEntoproctaBryozoaBrachiozoaBrachiopodPhoronidSpongeCalcareous SpongeHexactinellidDemospongeHomoscleromorphaCnidariaAnthozoaMedusozoaMyxozoaVertebrateAgnathaChondrichthyesOsteichthyesAmphibianReptileBirdMammalEchinodermCrinozoaAsterozoaEchinozoaNematodeChromadoreaEnopleaSecernenteaArthropodChelicerataMyriapodaCrustaceanHexapodaFlatwormTurbellariaTrematodaMonogeneaCestodaBryozoaPhylactolaemataStenolaemataGymnolaemataAnnelidPolychaeteClitellataEchiuraMolluscaGastropodaCephalopodBivalviaChitonTusk ShellDiploblastSalinellaNomen DubiumPlatyzoaTemplate:Fungi ClassificationTemplate Talk:Fungi ClassificationOpisthokontFungusList Of Fungal OrdersDomain (biology)Template:Archaea ClassificationTemplate:Bacteria ClassificationTemplate:EukaryotaKingdom (biology)Template:Plant ClassificationTemplate:HacrobiaTemplate:HeterokontTemplate:AlveolataTemplate:RhizariaTemplate:ExcavataTemplate:AmoebozoaTemplate:Opisthokont ProtistsTemplate:AnimaliaTemplate:Fungi ClassificationDikaryaAscomycotaPezizomycotinaLeotiomycetaDothideomycetaLichinomycetesArthoniomycetesDothideomycetesEurotiomycetesLecanoromycetesSordariomycetaGeoglossomycetesLeotiomycetesLaboulbeniomycetesSordariomycetesOrbiliomycetesPezizomycetesSaccharomycotinaSaccharomycetesTaphrinomycotinaArchaeorhizomycetesNeolectaPneumocystisSchizosaccharomycetesTaphrinomycetesBasidiomycotaBasidiaPucciniomycotinaTritirachiomycetesMixiomycetesAgaricostilbomycetesCystobasidiomycetesMicrobotryomycetesClassiculomycetesCryptomycocolacomycetesAtractiellomycetesPucciniomycetesUstilaginomycotinaUstilaginomycetesExobasidiomycetesAgaricomycotinaHymenomyceteDacrymycetalesAgaricomycetesWallemiomycetesTremellomycetesEntorrhizomycotaEntorrhizomycetesGlomeromycotaGlomeromycetesZygomycotaMucoromycotinaMortierellomycetesMucoromycetesKickxellomycotinaZoopagomycetesKickxellomycetesEntomophthoromycotinaNeozygitomycetesBasidiobolomycetesEntomophthoromycetesZoosporeOlpidiomycotaOlpidiomycetesBlastocladiomycotaBlastocladiomycetesChytridiomycotaNeocallimastigomycetesHyaloraphidiomycetesMonoblepharidomycetesChytridiomycetesList Of Fungal OrdersFungi ImperfectiTemplate:Organisms Et Al.Template Talk:Organisms Et Al.OrganismLifeBacteriaArchaeaEukaryotaAnimaliaFungiPlantaeProtistaNon-cellular LifeVirusDNA VirusDNA VirusDouble-stranded RNA VirusesRNA VirusRNA VirusRetrovirusDsDNA-RT VirusViroidPospiviroidaeAvsunviroidaePrionPrionFungal PrionSatellite (biology)VirophageVirusoidDefective Interfering ParticleDefective Interfering RNADefective Interfering DNAHelp:Taxon IdentifiersWikidataAlgaeBaseEncyclopedia Of LifeFossilworksNational Center For Biotechnology InformationHelp:Authority ControlIntegrated Authority FileHelp:CategoryCategory:EukaryotesCategory:Domains (biology)Category:CS1 Maint: Uses Editors ParameterCategory:Wikipedia Articles Needing Page Number Citations From November 2017Category:Wikipedia Indefinitely Move-protected PagesCategory:Articles With 'species' MicroformatsCategory:Articles Containing Potentially Dated Statements From 2011Category:All Articles Containing Potentially Dated StatementsCategory:All Articles With Unsourced StatementsCategory:Articles With Unsourced Statements From March 2017Category:Wikipedia Articles Incorporating Text From The United States National Library Of MedicineCategory:All Articles With Dead External LinksCategory:Articles With Dead External Links From March 2017Category:Use Dmy Dates From July 2011Category:Use American English From March 2017Category:All Wikipedia Articles Written In American EnglishCategory:Wikipedia Articles With GND IdentifiersCategory:Articles Containing Video ClipsDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link