Contents 1 Catalytic activity 2 Orthologs 3 Structure 4 Additional functions 5 References 6 External links


Catalytic activity[edit] Cdk activation requires two steps. First, cyclin must bind to the Cdk. In the second step, CAK must phosphorylate the cyclin-Cdk complex on the threonine residue 160, which is located in the Cdk activation segment. Since Cdks need to be free of Cdk inhibitor proteins (CKIs) and associated with cyclins in order to be activated, CAK activity is considered to be indirectly regulated by cyclins. Phosphorylation is generally considered a reversible modification used to change enzyme activity in different conditions. However, activating phosphorylation of Cdk by CAK appears to be an exception to this trend. In fact, CAK activity remains high throughout the cell cycle and is not regulated by any known cell-cycle control mechanism. However compared to normal cells, CAK activity is reduced in quiescent G0 cells and slightly elevated in tumor cells.[1] In mammals, activating phosphorylation by CAK can only occur once cyclin is bound. In budding yeast, activating phosphorylation by CAK can take place before cyclin binding. In both humans and yeast, cyclin binding is the rate limiting step in the activation of Cdk. Therefore, phosphorylation of Cdk by CAK is considered a post-translational modification that is necessary for enzyme activity. Although activating phosphorylation by CAK is not exploited for cell-cycle regulation purposes, it is a highly conserved process because CAK also regulates transcription.


Orthologs[edit] CAK varies dramatically in different species. In vertebrates and Drosophilia, CAK is a trimeric protein complex consisting of Cdk7 (a Cdk-related protein kinase), cyclinH, and Mat1.[2] The Cdk7 subunit is responsible for Cdk activation while the Mat1 subunit is responsible for transcription. The CAK trimer can be phosphorylated on the activation segment of Cdk7 subunit. However, unlike other Cdks, this phosphorylation is might not be essential for CAK activity. In the presence of Mat1, activation of CAK does not require phosphorylation of the activation segment. However, in the absence of Mat1, phosphorylation of the activation segment is required for CAK activity.[1] In vertebrates, CAK localizes to the nucleus. This suggests that CAK is not only involved in cell-cycle regulation but is also involved in transcription. In fact, the Cdk7 subunit of vertebrate CAK phosphorylates several components of the transcriptional machinery. In budding yeast, CAK is a monomeric protein kinase and is referred to as Cak1.[2] Cak1 is distantly homologous to Cdks. Cak1 localizes to the cytoplasm and is responsible for Cdk activation. Budding yeast Cdk7 homolog, Kin28, does not have CAK activity. Fission yeasts have two CAKs with both overlapping and specialized functions. The first CAK is a complex of Msc6 and Msc2. The Msc6 and Msc2 complex is related to the vertebrate Cdk7-cyclinH complex. Msc6 and Msc2 complex not only activates cell cycle Cdks but also regulates gene expression because it is part of the transcription factor TFIIH. The second fission yeast CAK, Csk1, is an ortholog of budding yeast Cak1. Csk1 can activate Cdks but is not essential for Cdk activity.[2] Table of Cdk-activating Kinases http://www.oup.com/uk/orc/bin/9780199206100/resources/figures/nsp-cellcycle-3-3-3_7.jpg. Credit to: Oxford University Press "Morgan: The Cell Cycle" Cdkactivation http://www.oup.com/uk/orc/bin/9780199206100/resources/figures/nsp-cellcycle-3-3-3_8.jpg Credit to: Oxford University Press "Morgan: The Cell Cycle"


Structure[edit] The conformation of the Cdk2 active site changes dramatically upon cyclin binding and CAK phosphorylation. The active site of Cdk2 lies in a cleft between the two lobes of the kinase. ATP binds deep within the cleft and its phosphate is oriented outwards. Protein substrates bind to the entrance of the active site cleft. In its inactive form, Cdk2 cannot bind substrate because the entrance of its active site is blocked by the T-loop. Inactive Cdk2 also has a misoriented ATP binding site. When Cdk2 is inactive, the small L12 helix pushes the large PSTAIRE helix outwards. The PSTAIRE helix contains a residue, glutamate 51, that is important for positioning the ATP phosphates.[2] When cyclinA binds, several conformational changes take place. The T-loop moves out of active site entrance and no longer blocks the substrate binding site. The PSTAIRE helix moves in. The L12 helix becomes a beta strand. This allows glutamate 51 to interact with lysine 33. Aspartate 145 also changes position. Together these structural changes allow ATP phosphates to bind correctly.[2] When CAK phosphorylates Cdk's threonine residue160, the T-loop flattens and interacts more closely with cyclin A. Phosphorylation also allows the Cdk to interact more effectively with substrates that contain the SPXK sequence. Phosphorylation also increases the activity of cyclinA-Cdk2 complex. Different cyclins produce different conformation changes in Cdk. Image Link - Structural Basis of Cdk Activation http://www.oup.com/uk/orc/bin/9780199206100/resources/figures/nsp-cellcycle-3-4-3_12.jpg Credit to: Oxford University Press "Morgan: The Cell Cycle"


Additional functions[edit] In addition to activating Cdks, CAK also regulates transcription. Two forms of CAK have been identified: free CAK and TFIIH-associated CAK. Free CAK is more abundant than TFIIH-associated CAK.[1] Free CAK phosphorylates Cdks and is involved in cell cycle regulation. Associated CAK is part of the general transcription factor TFIIH. CAK associated with TFIIH phosphorylates proteins involved in transcription including RNA polymerase II. More specifically, associated CAK is involved in promoter clearance and progression of transcription from the preinitiation to the initiation stage. In vertebrates, the trimeric CAK complex is responsible for transcription regulation. In budding yeast, the Cdk7 homolog, Kin28, regulates transcription. In fission yeast, the Msc6 Msc2 complex controls basal gene transcription.[2] In addition to regulating transcription, CAK also enhances transcription by phosphorylating retinoic acid and estrogen receptors. Phosphorylation of these receptors leads to increased expression of target genes. In leukemic cells, where DNA is damaged, CAK’s ability to phosphorylate retinoic acid and estrogen receptors is decreased. Decreased CAK activity creates a feedback loop, which turns off TFIIH activity. CAK also plays a role in DNA damage response.[1] The activity of CAK associated with TFIIH decreases when DNA is damaged by UV irradiation. Inhibition of CAK prevents cell cycle from progressing. This mechanism ensures the fidelity of chromosome transmission.[1]


References[edit] ^ a b c d e f Lolli G, Johnson LN (April 2005). "CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs?". Cell Cycle. 4 (4): 572–7. doi:10.4161/cc.4.4.1607. PMID 15876871.  ^ a b c d e f Morgan, David L. (2007). The cell cycle: principles of control. London: Published by New Science Press in association with Oxford University Press. ISBN 0-87893-508-8. 


External links[edit] Cdk-activating kinase at the US National Library of Medicine Medical Subject Headings (MeSH) v t e Cell cycle proteins Cyclin A (A1, A2) B (B1, B2, B3) D (D1, D2, D3) E (E1, E2) CDK 1 2 3 4 5 6 7 8 9 10 CDK-activating kinase CDK inhibitor INK4a/ARF (p14arf/p16, p15, p18, p19) cip/kip (p21, p27, p57) P53 p63 p73 family p53 p63 p73 Other Cdc2 Cdc25 Cdc42 Cellular apoptosis susceptibility protein E2F Maturation promoting factor Wee Cullin (CUL7) Phases and checkpoints Interphase G1 phase S phase G2 phase M phase Mitosis (Preprophase Prophase Prometaphase Metaphase Anaphase Telophase) Cytokinesis Cell cycle checkpoints Restriction point Spindle checkpoint Postreplication checkpoint Other cellular phases Apoptosis G0 phase Meiosis Retrieved from "https://en.wikipedia.org/w/index.php?title=CDK-activating_kinase&oldid=794494207" Categories: Cell cycleHidden categories: Articles needing additional references from July 2007All articles needing additional references


Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadEditView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version Languages Русский Edit links This page was last edited on 8 August 2017, at 11:14. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.116","walltime":"0.166","ppvisitednodes":{"value":454,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":26781,"limit":2097152},"templateargumentsize":{"value":136,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 133.920 1 -total"," 41.36% 55.392 1 Template:Reflist"," 34.29% 45.922 1 Template:Refimprove"," 25.50% 34.148 1 Template:Cite_journal"," 21.92% 29.354 1 Template:Ambox"," 11.88% 15.911 1 Template:Cell_cycle_proteins"," 11.82% 15.832 2 Template:Navbox"," 6.48% 8.684 1 Template:MeshName"," 4.48% 6.003 1 Template:Cite_book"," 1.16% 1.547 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.048","limit":"10.000"},"limitreport-memusage":{"value":2545809,"limit":52428800}},"cachereport":{"origin":"mw1244","timestamp":"20180111131410","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":255,"wgHostname":"mw1244"});});


CDK-activating_kinase - Photos and All Basic Informations

CDK-activating_kinase More Links

Wikipedia:VerifiabilityHelp:Introduction To Referencing With Wiki Markup/1Help:Maintenance Template RemovalCyclin-dependent KinaseCyclin-dependent KinaseCdk1Cdk2Cdk4Cdk6Cyclin-dependent KinaseCyclin-dependent KinaseCyclin-dependent KinaseCyclin-dependent KinaseCyclin-dependent KinaseCyclin-dependent Kinase Inhibitor ProteinCyclin-dependent KinaseCyclin-dependent KinaseCDK7MAT1Cyclin-dependent KinaseMAT1Cyclin-dependent KinaseMAT1MAT1CDK7Cyclin-dependent KinaseCyclin-dependent KinaseCDK7TFIIHCyclin-dependent KinaseCyclin-dependent KinaseCdk2Cdk2Adenosine TriphosphateCdk2Cdk2Adenosine TriphosphateCdk2Adenosine TriphosphateAdenosine TriphosphateCyclin-dependent KinaseCyclin-dependent KinaseCdk2Cyclin-dependent KinaseCyclin-dependent KinaseCyclin-dependent KinaseCyclin-dependent KinaseTFIIHTFIIHCDK7Digital Object IdentifierPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/0-87893-508-8Medical Subject HeadingsTemplate:Cell Cycle ProteinsTemplate Talk:Cell Cycle ProteinsCell CycleProteinCyclinCyclin ACyclin A1Cyclin A2Cyclin BCyclin B1Cyclin B2Cyclin DCyclin D1Cyclin D2Cyclin D3Cyclin ECyclin E1Cyclin E2Cyclin-dependent KinaseCyclin-dependent Kinase 1Cyclin-dependent Kinase 2Cyclin-dependent Kinase 3Cyclin-dependent Kinase 4Cyclin-dependent Kinase 5Cyclin-dependent Kinase 6Cyclin-dependent Kinase 7Cyclin-dependent Kinase 8Cyclin-dependent Kinase 9Cyclin-dependent Kinase 10Cyclin-dependent Kinase Inhibitor ProteinCell CycleP14arfP16CDKN2BCDKN2CCDKN2DCell CycleP21CDKN1BCyclin-dependent Kinase Inhibitor 1CP53 P63 P73 FamilyP53TP63P73Cdk1Cdc25CDC42Cellular Apoptosis Susceptibility ProteinE2FMaturation Promoting FactorWee1CullinCUL7InterphaseG1 PhaseS PhaseG2 PhaseCell DivisionMitosisPreprophaseProphasePrometaphaseMetaphaseAnaphaseTelophaseCytokinesisCell Cycle CheckpointRestriction PointSpindle CheckpointPostreplication CheckpointApoptosisG0 PhaseMeiosisHelp:CategoryCategory:Cell CycleCategory:Articles Needing Additional References From July 2007Category:All Articles Needing Additional ReferencesDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]Edit This Page [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer



view link view link view link view link view link